В нормальном законе распределения математическое ожидание равно. Нормальное распределение

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие нормального закона распределения, функции распределения такого закона, порядка вычисления вероятности попадания случайной величины Х в определенный интервал.

Показатель Нормальный закон распределения Примечание
Определение Нормальным называется распределение вероятностей непрерывной случайной величины X, плотность которого имеет вид
где m x – математическое ожидание случайной величины Х, σ x – среднее квадратическое отклонение
2 Функция распределения
Вероятность попадания в интервал (а;b)
- интегральная функция Лапласа
Вероятность того, что абсолютная величина отклонения меньше положительного числа δ при m x = 0

Пример решения задачи по теме «Нормальный закон распределения непрерывной случайной величины»

Задача.

Длина X некоторой детали представляет собой случайную величину, распределенную по нормальному закону распределения, и имеет среднее значение 20 мм и среднее квадратическое отклонение – 0,2 мм.
Необходимо:
а) записать выражение плотности распределения;
б) найти вероятность того, что длина детали будет заключена между 19,7 и 20,3 мм;
в) найти вероятность того, что величина отклонения не превышает 0,1 мм;
г) определить, какой процент составляют детали, отклонение которых от среднего значения не превышает 0,1 мм;
д) найти, каким должно быть задано отклонение, чтобы процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%;
е) найти интервал, симметричный относительно среднего значения, в котором будет находиться X с вероятностью 0,95.

Решение. а) Плотность вероятности случайной величины X, распределенной по нормальному закону находим :

при условии, что m x =20, σ =0,2.

б) Для нормального распределения случайной величины вероятность попасть в интервал (19,7; 20,3) определяется :
Ф((20,3-20)/0,2) – Ф((19,7-20)/0,2) = Ф(0,3/0,2) – Ф(-0,3/0,2) = 2Ф(0,3/0,2) = 2Ф(1,5) = 2*0,4332 = 0,8664.
Значение Ф(1,5) = 0,4332 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

в) Вероятность того, что абсолютная величина отклонения меньше положительного числа 0,1 найдем :
Р(|Х-20| < 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383.
Значение Ф(0,5) = 0,1915 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

г) Поскольку вероятность отклонения, меньшего 0,1 мм, равна 0,383, то отсюда следует, что в среднем 38,3 детали из 100 окажутся с таким отклонением, т.е. 38,3%.

д) Поскольку процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%, то Р(|Х-20| < δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а значит Ф(δ/σ) = 0,27.

Используя приложение (таблица 2 ), находим δ/σ = 0,74. Отсюда δ = 0,74*σ = 0,74*0,2 = 0,148 мм.

е) Поскольку искомый интервал симметричен относительно среднего значения m x = 20, то его можно определить как множество значений X, удовлетворяющих неравенству 20 − δ < X < 20 + δ или |x − 20| < δ .

По условию вероятность нахождения X в искомом интервале равна 0,95, значит P(|x − 20| < δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475.

Используя приложение (таблица 2 ), находим δ/σ = 1,96. Отсюда δ = 1,96*σ = 1,96*0,2 = 0,392.
Искомый интервал : (20 – 0,392; 20 + 0,392) или (19,608; 20,392).

) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

(18.1)

где а и — параметры распределения.

Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

Математическое ожидание (18.2)

Дисперсия (18.3)

Среднеквадратичное отклонение (18.4)

Коэффициент асимметрии А = 0 (18.5)

Эксцесс Е = 0. (18.6)

Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

Одно из представлений интеграла вероятностей:

Величина и называется квантилем.

Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

Рис. 18.2. Функция нормального закона распределения.

Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

Следует заметить, что

Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.

Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .

Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества. Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из теории вероятностей.

Определение : Случайная величина x распределена по нормальному закону , если она имеет :

Нормальное распределение зависит от двух параметров: μ (мю) - является , и σ (сигма) - является (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ - разброс относительно центра (среднего).

Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про , а в файле примера на листе Влияние параметров можно с помощью понаблюдать за изменением формы кривой.

Нормальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Нормального распределения имеется функция НОРМ.РАСП() , английское название - NORM.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина X, распределенная по нормальному закону , примет значение меньше или равное x). Вычисления в последнем случае производятся по следующей формуле:

Вышеуказанное распределение имеет обозначение N (μ; σ). Так же часто используют обозначение через N (μ; σ 2).

Примечание : До MS EXCEL 2010 в EXCEL была только функция НОРМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности. НОРМРАСП() оставлена в MS EXCEL 2010 для совместимости.

Стандартное нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с μ=0 и σ=1. Вышеуказанное распределение имеет обозначение N (0;1).

Примечание : В литературе для случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение z.

Любое нормальное распределение можно преобразовать в стандартное через замену переменной z =(x -μ)/σ . Этот процесс преобразования называется стандартизацией .

Примечание : В MS EXCEL имеется функция НОРМАЛИЗАЦИЯ() , которая выполняет вышеуказанное преобразование. Хотя в MS EXCEL это преобразование называется почему-то нормализацией . Формулы =(x-μ)/σ и =НОРМАЛИЗАЦИЯ(х;μ;σ) вернут одинаковый результат.

В MS EXCEL 2010 для имеется специальная функция НОРМ.СТ.РАСП() и ее устаревший вариант НОРМСТРАСП() , выполняющий аналогичные вычисления.

Продемонстрируем, как в MS EXCEL осуществляется процесс стандартизации нормального распределения N (1,5; 2).

Для этого вычислим вероятность, что случайная величина, распределенная по нормальному закону N(1,5; 2) , меньше или равна 2,5. Формула выглядит так: =НОРМ.РАСП(2,5; 1,5; 2; ИСТИНА) =0,691462. Сделав замену переменной z =(2,5-1,5)/2=0,5 , запишем формулу для вычисления Стандартного нормального распределения: =НОРМ.СТ.РАСП(0,5; ИСТИНА) =0,691462.

Естественно, обе формулы дают одинаковые результаты (см. файл примера лист Пример ).

Обратите внимание, что стандартизация относится только к (аргумент интегральная равен ИСТИНА), а не к плотности вероятности .

Примечание : В литературе для функции, вычисляющей вероятности случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение Ф(z). В MS EXCEL эта функция вычисляется по формуле
=НОРМ.СТ.РАСП(z;ИСТИНА) . Вычисления производятся по формуле

В силу четности функции распределения f(x), а именно f(x)=f(-х), функция стандартного нормального распределения обладает свойством Ф(-x)=1-Ф(x).

Обратные функции

Функция НОРМ.СТ.РАСП(x;ИСТИНА) вычисляет вероятность P, что случайная величина Х примет значение меньше или равное х. Но часто требуется провести обратное вычисление: зная вероятность P, требуется вычислить значение х. Вычисленное значение х называется стандартного нормального распределения .

В MS EXCEL для вычисления квантилей используют функцию НОРМ.СТ.ОБР() и НОРМ.ОБР() .

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение , находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% - в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:

=НОРМ.СТ.РАСП(1;ИСТИНА)-НОРМ.СТ.РАСП(-1;ИСТИНА)

которая вернет значение 68,2689% - именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).

В силу четности функции плотности стандартного нормального распределения: f (x )= f (-х) , функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:

=2*НОРМ.СТ.РАСП(1;ИСТИНА)-1

Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:

2* НОРМ.РАСП(μ+1*σ;μ;σ;ИСТИНА)-1

Вышеуказанные расчеты вероятности требуются для .

Примечание : Для удобства написания формул в файле примера созданы для параметров распределения: μ и σ.

Генерация случайных чисел

Сгенерируем 3 массива по 100 чисел с различными μ и σ. Для этого в окне Генерация случайных чисел установим следующие значения для каждой пары параметров:

Примечание : Если установить опцию Случайное рассеивание (Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию равной 25, можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца чисел, на основании которых можно, оценить параметры распределения, из которого была произведена выборка: μ и σ. Оценку для μ можно сделать с использованием функции СРЗНАЧ() , а для σ – с использованием функции СТАНДОТКЛОН.В() , см. файл примера лист Генерация .

Примечание : Для генерирования массива чисел, распределенных по нормальному закону , можно использовать формулу =НОРМ.ОБР(СЛЧИС();μ;σ) . Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Задачи

Задача1 . Компания изготавливает нейлоновые нити со средней прочностью 41 МПа и стандартным отклонением 2 МПа. Потребитель хочет приобрести нити с прочностью не менее 36 МПа. Рассчитайте вероятность, что партии нити, изготовленные компанией для потребителя, будут соответствовать требованиям или превышать их.
Решение1 : =1-НОРМ.РАСП(36;41;2;ИСТИНА)

Задача2 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Согласно техническим условиям, трубы признаются годными, если диаметр находится в пределах 20,00+/- 0,40 мм. Какая доля изготовленных труб соответствует ТУ?
Решение2 : = НОРМ.РАСП(20,00+0,40;20,20;0,25;ИСТИНА)- НОРМ.РАСП(20,00-0,40;20,20;0,25)
На рисунке ниже, выделена область значений диаметров, которая удовлетворяет требованиям спецификации.

Решение приведено в файле примера лист Задачи .

Задача3 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Внешний диаметр не должен превышать определенное значение (предполагается, что нижняя граница не важна). Какую верхнюю границу в технических условиях необходимо установить, чтобы ей соответствовало 97,5% всех изготавливаемых изделий?
Решение3 : =НОРМ.ОБР(0,975; 20,20; 0,25) =20,6899 или
=НОРМ.СТ.ОБР(0,975)*0,25+20,2 (произведена «дестандартизация», см. выше)

Задача 4 . Нахождение параметров нормального распределения по значениям 2-х (или ).
Предположим, известно, что случайная величина имеет нормальное распределение, но не известны его параметры, а только 2-я процентиля (например, 0,5-процентиль , т.е. медиана и 0,95-я процентиль ). Т.к. известна , то мы знаем , т.е. μ. Чтобы найти нужно использовать .
Решение приведено в файле примера лист Задачи .

Примечание : До MS EXCEL 2010 в EXCEL были функции НОРМОБР() и НОРМСТОБР() , которые эквивалентны НОРМ.ОБР() и НОРМ.СТ.ОБР() . НОРМОБР() и НОРМСТОБР() оставлены в MS EXCEL 2010 и выше только для совместимости.

Линейные комбинации нормально распределенных случайных величин

Известно, что линейная комбинация нормально распределённых случайных величин x (i ) с параметрами μ(i ) и σ(i ) также распределена нормально. Например, если случайная величина Y=x(1)+x(2), то Y будет иметь распределение с параметрами μ(1)+ μ(2) и КОРЕНЬ(σ(1)^2+ σ(2)^2). Убедимся в этом с помощью MS EXCEL.

Подставив φ(x)=π /4 ,f(x)=1/(b-a)

D[π /4]=( /720) ).

№319 Ребро куба x измерено приближенно, причем a . Рассматривая ребро куба как случайную величину X,распределенную равномерно в интервале (a,b),найти математическое ожидание и дисперсию объема куба.

1.Найдем математическое ожидание площади круга – случайной величины Y=φ(K)= - по формуле

M[φ(X)]=

Поставив φ(x)= ,f(x)=1/(b-a) и выполнив интегрирование, получим

M( )=
.

2.Найдём дисперсию площади круга по формуле

D [φ(X)]= - .

Подставив φ(x)= ,f(x)=1/(b-a) и выполнив интегрирование, получим

D = .

№320 Случайные величины X и Y независимы и распределены равномерно: X-в интервале (a,b),Y-в интервале (c,d).Найти математическое ожидание произведения XY.

Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, т.е.

M(XY)=

№321 Случайные величины X и Y независимы и распределены равномерно: X- в интервале (a,b), Y – в интервале (c,d). Найти дисперсию произведения XY.

Воспользуемся формулой

D(XY)=M[

Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, поэтому

Найдем M по формуле

M[φ(X)]=

Подставляя φ(x)= ,f(x)=1/(b-a) и выполняя интегрирование,получим

M (**)

Аналогично найдем

M (***)

Подставив M(X)=(a+b)/2, M(Y)=(c+d)/2 ,а так же (***) и (**) в (*),окончательно получим

D(XY)= -[ .

№322 Математическое ожидание нормально распределённой случайной величины X равно a=3 и среднее квадратическое отклонение σ=2.Написать плотность вероятности X.

Воспользуемся формулой:

f(x)= .

Подставляя имеющиеся значения получим:

f(x)= = f(x)= .

№323 Написать плотность вероятности нормально распределенной случайной величины X, зная, что M(X)=3, D(X)=16.

Воспользуемся формулой:

f(x)= .

Для того, чтобы найти значение σ воспользуемся свойством, что среднее квадратическое отклонение случайной величины X равно квадратному корню из ее дисперсии. Следовательно σ=4, M(X)=a=3. Подставляя в формулу получим

f(x)= = .

№324 Нормально распределенная случайная величина X задана плотностью

f(x)= . Найти математическое ожидание и дисперсию X.

Воспользуемся формулой

f(x)= ,

где a -математическое ожидание, σ -среднее квадратическое отклонение X. Из этой формулы следует, что a=M(X)=1 . Для нахождения дисперсии воспользуемся свойством, что среднее квадратическое отклонение случайной величины X равно квадратному корню из ее дисперсии. Следовательно D(X)= =

Ответ: математическое ожидание равно 1; дисперсия равна 25.

Бондарчук Родион

Дана функция распределения нормированного нормального закона . Найти плотность распределения f(x).

Зная, что , находим f(x).

Ответ:

Доказать, что функция Лапласа . нечетна: .

Произведем замену

Делаем обратную замену и получаем:

= =



Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Определение. Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса ) с параметрами а и σ 2 , если ее плотность вероятности f (x ) имеет вид :

. (6.19)

Кривую нормального закона распределения называют нормальной или гауссовой кривой . На рис. 6.5 а), б) показана нормальная кривая с параметрами а и σ 2 и график функции распределения.

Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а , имеет максимум в точке х = а , равный , и две точки перегиба х = а σ с ординатами .

Можно заметить, что в выражении плотности нормального закона параметры распределения обозначены буквами а и σ 2 , которыми мы обозначали математическое ожидание и дисперсию. Такое совпадение не случайно. Рассмотрим теорему, которая устанавливает теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру a этого распределения , т.е.

М (Х ) = а , (6.20)

а ее дисперсия – параметру σ 2 , т.е.

D (X ) = σ 2 . (6.21)

Выясним, как будет меняться нормальная кривая при изменении параметров а и σ .

Если σ = const, и меняется параметр a (а 1 < а 2 < а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 6.6).

Рис. 6.6

Рис. 6.7

Если а = const и меняется параметр σ , то меняется ордината максимума кривой f max (a ) = . При увеличении σ ордината максимума уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс. При уменьшении σ , напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков (рис. 6.7).

Таким образом, параметр a характеризует положение, а параметр σ – форму нормальной кривой.

Нормальный закон распределения случайной величины с параметрами a = 0 и σ = 1 называется стандартным или нормированным , а соответствующая нормальная кривая – стандартной или нормированной .

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, связана с тем, что интеграл от функции нормального распределения не выражается через элементарные функции. Однако его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или . Такую функцию называют функцией Лапласа , для нее составлены таблицы. Существует много разновидностей такой функции, например:

, .

Мы будем использовать функцию

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервал [α , β ] равна

Вычислим по этой формуле вероятности при различных значениях δ (используя таблицу значений функции Лапласа):

при δ = σ = 2Ф(1) = 0,6827;

при δ = 2σ = 2Ф(2) = 0,9545;

при δ = 3σ = 2Ф(3) = 0,9973.

Отсюда вытекает так называемое «правило трех сигм »:

Если случайная величина Х имеет нормальный закон распределения с параметрами a и σ, то практически достоверно, что ее значения заключены в интервале (a – 3σ ; a + 3σ ).

Пример 6.3. Полагая, что рост мужчин определенной возрастной группы есть нормально распределенная случайная величина Х с параметрами а = 173 и σ 2 = 36, найти:

1. Выражение плотности вероятности и функции распределения случайной величины Х ;

2. Долю костюмов 4-го роста (176 – 183 см) и долю костюмов 3-го роста (170 – 176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы;

3. Сформулировать «правило трех сигм» для случайной величины Х .

1. Находим плотность вероятности

и функцию распределения случайной величины Х

= .

2. Долю костюмов 4-го роста (176 – 182 см) находим как вероятность

Р (176 ≤ Х ≤ 182) = = Ф(1,5) – Ф(0,5).

По таблице значений функции Лапласа (Приложение 2 ) находим:

Ф(1,5) = 0,4332, Ф(0,5) = 0,1915.

Окончательно получаем

Р (176 ≤ Х ≤ 182) = 0,4332 – 0,1915 = 0,2417.

Долю костюмов 3-го роста (170 – 176 см) можно найти аналогично. Однако проще это сделать, если учесть, что данный интервал симметричен относительно математического ожидания а = 173, т.е. неравенство 170 ≤ Х ≤ 176 равносильно неравенству │Х – 173│≤ 3. Тогда

Р (170 ≤Х ≤176) = Р (│Х – 173│≤ 3) = 2Ф(3/6) = 2Ф(0,5) = 2·0,1915 = 0,3830.

3. Сформулируем «правило трех сигм» для случайной величины Х:

Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а – 3σ = 173 – 3·6 = 155 до а + 3σ = 173 + 3·6 = 191, т.е. 155 ≤ Х ≤ 191. ◄


7. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Как уже говорилось при изучении случайных величин, невозможно заранее предсказать, какое значение примет случайная величина в результате единичного испытания – это зависит от многих причин, учесть которые невозможно.

Однако при многократном повторении испытаний характер поведения суммы случайных величин почти утрачивает случайный характер и становится закономерным. Наличие закономерностей связано именно с массовостью явлений, порождающих в своей совокупности случайную величину, подчиненную вполне определенному закону. Суть устойчивости массовых явлений сводится к следующему: конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате массы таких явлений; случайные отклонения от среднего, неизбежные в каждом отдельном явлении, в массе взаимно погашаются, нивелируются, выравниваются.

Именно эта устойчивость средних и представляет собой физическое содержание «закона больших чисел», понимаемого в широком смысле слова: при очень большом числе случайных явлений их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности.

В узком смысле слова под «законом больших чисел» в теории вероятностей понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа опытов к некоторым определенным постоянным.

Закон больших чисел играет важную роль в практических применениях теории вероятностей. Свойство случайных величин при определенных условиях вести себя практически как не случайные позволяет уверенно оперировать этими величинами, предсказывать результаты массовых случайных явлений почти с полной определенностью.

Возможности таких предсказаний в области массовых случайных явлений еще больше расширяются наличием другой группы предельных теорем, касающихся уже не предельных значений случайных величин, а предельных законов распределения. Речь идет о группе теорем, известных под названием «центральной предельной теоремы». Различные формы центральной предельной теоремы различаются между собой теми условиями, для которых устанавливается это предельное свойство суммы случайных величин.

Различные формы закона больших чисел с различными формами центральной предельной теоремы образуют совокупность так называемых предельных теорем теории вероятностей. Предельные теоремы дают возможность не только осуществлять научные прогнозы в области случайных явлений, но и оценивать точность этих прогнозов.

Поделиться: