Жк индикаторы. Жидкокристаллические индикаторы производства мэлт

В настоящее время широкое распространение получили жидкокристаллические индикаторы (ЖКИ). От светодиодных они отличаются тем, что не излучают свет, а лишь меняют коэффициент пропускания или поглощения света на определенных участках. При этом такие участки будут выглядеть темнее, либо светлее окружающих. Они могут быть выполнены в виде сегментов, либо точек.

ЖКИ формируют изображение лишь при наличии внешнего источника света, который может располагаться как перед индикатором, так и за ним.

Работа ЖКИ индикаторов основана на использовании специальных веществ, которые называются жидкими кристаллами. Их структура имеет свойства характерные как для жидкости (возможность перемещения молекул), так и для твердых тел – упорядоченность. Чаще всего для создания цифровых ЖКИ используются вещества, обладающие нематическими свойствами. Их молекулы представляют собой длинные нити, которые могут определенным образом ориентироваться. Такая ориентация в частности происходит под действием внешнего электрического поля.

В большинстве жидкокристаллических индикаторов используется эффект вращения плоскости поляризации. Свет представляет собой поток электромагнитного излучения, причем векторы электрического и магнитного полей могут в ходе распространения луча менять свое направление в пространстве (это характерно для неполяризованного света), а могут сохранять его (в этом случае свет считается поляризованным).

Свет от обычных источников (ламп накаливания, светодиодов, солнца и т. п.) неполяризован. Однако, пропуская световой поток через особым образом обработанные прозрачные пластинки (поляризаторы) со специальной структурой внешнего слоя, можно получить свет поляризованный в том или ином направлении.

Если два поляризатора расположить так, чтобы направления поляризации совпадали (рис. 3.17), то, пройдя через первый свет поляризуется, а так как направление поляризации у второй пластинки такое же, то он пройдет и через нее. Для наблюдателя такая структура будет прозрачной.

Если один из поляризаторов повернуть на 90 градусов (рис.3.18), то пройдя первый из них и получив вертикальное направление поляризации поток света не будет пропущен второй пластинкой (поглотится), так как направление ее поляризации горизонтально, а такой компоненты в дошедшем потоке нет. При освещении внешним источником данная структура будет казаться наблюдателю темной. Если первый поляризатор выполнить в виде набора участков в виде точек или полосок, направлением поляризации которых можно управлять независимо друг от друга, то удастся формировать различные знаки и символы. Однако такой способ управления на практике не используется, так как он требует механического воздействия на соответствующие элементы индикатора. В ЖКИ для изменения направления вектора поляризации применяются жидкие кристаллы.

Упрощенная структура ячейки жидкокристаллического индикатора приведена на рис. 3.19. Между двумя поляризаторами со скрещенными направлениями поляризации помещается тонкий слой жидкого кристалла нематической структуры, молекулы которого представляют собой длинные параллельные нити. Они располагаются вдоль осей поляризации на границах пластинок и плавно меняют свое направление в области между ними.

Если на такую структуру направить поток света, то после прохождения нижней пластинники он поляризуется и будет плавно менять направление поляризации по мере распространения к верхней, так как молекулы жидкого кристалла также выполняют роль поляризатора с изменяющимся в пространстве направлением. Поэтому до второй пластинки свет дойдет уже вертикально поляризованным и пройдет ее без поглощения. Для наблюдателя данная структура будет казаться прозрачной.

Если между пластинками поляризаторов приложить электрическое поле, то молекулы жидкого кристалла вытянутся вдоль него и дополнительного поворота плоскости поляризации света не произойдет. Световой поток будет поглощаться как в слое жидкого кристалла, так и вторым поляризатором. Так как в этом случае ячейка не пропускает свет, то она будет темной.

В жидкокристаллических индикаторах электрод заднего поляризатора делается сплошным, а электроды переднего выполняются в виде сегментов или точек. Они изготавливаются на основе токопроводящих окислов металлов, тонкие пленки которых прозрачны. Жидкие кристаллы являются диэлектриками, поэтому такой индикатор представляет собой аналог конденсатора и практически не потребляет тока от источника постоянного напряжения. Для управления им требуется очень маленькая мощность, составляющая единицы и доли микроватт на ячейку. Поэтому такие индикаторы находят широкое применение в автономных системах, питающихся от встроенных источников энергии.

Особенностью жидкокристаллической ячейки является относительно большое время реакции на воздействие электрического поля. Оно составляет десятки миллисекунд, в то время как светодиодные индикаторы являются практически безынерционными.

При использовании для управления индикатором постоянного напряжения долговечность его работы оказывается невысокой. Это связано с возникновением процессов электролиза жидкого кристалла и разрушением его структуры. Чтобы избежать данного эффекта для управления используют знакопеременное напряжение с частотой десятки герц. При этом молекулы жидкого кристалла будут периодически поворачиваться вслед за изменением направления поля, ячейка останется темной, но так как каждый из электродов попеременно будет выполнять роль анода и катода, то процессы электролиза не будут успевать развиваться. Вследствие того, что частоты управляющих сигналов низки, токи через соответствующие участки индикатора, представляющие собой конденсаторные структуры будут сравнимы с токам утечки.

Однако применение двуполярного напряжения в цифровых устройствах затруднено тем, что в этом случае потребуется второй источник питания и аналоговые управляющие схемы. Поэтому данная задача решается путем использования логических элементов, выполняющих операцию суммирования по модулю два, которые могут функционировать в качестве управляемого инвертора.

Если на один из входов такого элемента подать периодический сигнал с частотой, а на другой - информационный сигнал(рис. 3.20), то напряжение на его выходе будет совпадать с периодическим сигналом при нулевом значениии окажется в противофазе с ним при единичном значении (рис. 3.21).

При этом разность потенциалов между входом на который подается периодический сигнал и выходом будет равна нулю когда
и окажется знакопеременной в случае, если
.

Для управления ЖКИ его общий электрод подключается к источнику периодического сигнала, а сегмент к выходу соответствующего элемента исключающее ИЛИ. Схема управления семисегментным индикатором в статическом режиме работы приведена на рис.3.22.

В
следствие относительно большой инерционности жидкокристаллических индикаторов реализовать рассмотренные ранее динамические системы управления не представляется возможным. Однако путем усложнения структуры ЖКИ и использования многофазных сигналов были построены динамические системы управления индикаторами сегментного и матричного типов.

В настоящее время разработаны жидкокристаллические индикаторы, сохраняющие состояние ячеек и при отключении питания.

Жидкокристаллические индикаторы широко применяются в различных устройствах для отображения символьной и графической информации. На их основе разработаны LCD (liquid crystal display) жидкокристаллические панели, представляющие собой матрицу ячеек, с возможностью независимого управления каждой из них.

Различают несколько разновидности таких панелей, в частности с пассивной (TN) и активной (TFT) матрицами. Упрощенная структура первой из них приведена на рис. 3.23. Конструктивно такая матрица представляет собой систему из двух стеклянных пластин, между которыми размещается слой жидкокристаллического вещества, а на пластины наносятся взаимно-перпендикулярные прозрачные электроды, соединенные со схемами управления столбцами C и строками R. Ячейка матрицы располагается на пересечении строки и столбца. Ее эквивалентную схему можно представить в виде совокупности резистора, конденсатора и светопропускающего клапана.

П
ри отсутствии разности потенциалов на электродах ячейки матрицы прозрачны. На панель направляется свет от специального источника и в таком состоянии она выглядит как светящийся экран. Наличие между электродами соответствующих ячеек напряжения, превышающего определенный уровень, вызывает изменение положения молекул жидкого кристалла и эти ячейки перестают пропускать свет.

В местах их расположения появляются темные точки, из которых формируется изображение. Варьируя величину управляющего напряжения можно менять степень поворота молекул и коэффициент светопропускания ячейки, что позволяет воспроизводить градации яркости.

При формировании изображения осуществляется сканирование матрицы по строкам, для чего на каждую из них поочередно подается импульс напряжения отрицательной полярности U1. Одновременно на столбцы, связанные с ячейками, которые должны изменить свое состояние поступает положительный импульс с амплитудой U2. Это условно отображено на рис. 3.23 в виде знаков +,- и 0 для нулевого уровня управляющего сигнала.

При опросе первой строки и наличии положительного напряжения на столбцах С1 и С3 происходит перезаряд конденсаторов соответствующих ячеек (Я1, Я3) до некоторого положительного напряжения. К моменту окончания импульса опроса напряжение на ячейке Я2 из-за воздействия отрицательного потенциала строки станет отрицательным, а на Я4, вследствие положительного потенциала столбца С1 изменится в положительную сторону (рис.3.24).

В следующем такте сканирования, верхние обкладки конденсаторов ячеек Я1, Я3 окажутся соединенными с корпусом и к ним будет приложено суммарное напряжение величиной
. Это вызовет перевод ячеек в непрозрачное состояние и формирование темных участков в местах их расположения. На данном интервале времени разность потенциалов на электродах ячеек Я2, Я4 недостаточна для изменения их состояния. После окончания сканирования строкиR3 изменит свое состояние ячейка Я9 и т.д. Полярность напряжения на ячейках периодически меняет знак, что не дает развиваться процессам электролиза.

LCD панель с пассивной матрицей проста по конструкции, но обладает рядом существенных недостатков. Из-за небольшого времени воздействия на ячейку напряжения превышающего пороговое (заштрихованная область на рис. 3.24) необходимо использовать жидкокристаллические материалы со значительным временем релаксации, то есть перехода после возбуждения в первоначальное состояние. Это не позволяет отображать быстроменяющиеся сцены. Кроме того, наличие остаточного напряжения на ячейках приводит к невысокой контрастности изображения, определяемой отношением яркости полностью затемненной и прозрачной ячеек. Еще одним недостатком является наличие связи между ними, что вызывает смазывание динамически меняющихся изображений. В настоящее время такие панели практически полностью вытеснены активными с тонкопленочными управляющими полевыми транзисторами.

Структура активной TFT (thin film transistor) матрицы и упрощенные временные диаграммы ее работы приведены на рис. 3.25 и рис. 3.26. Здесь работой каждой ячейки управляет полевой транзистор, изготовленный по тонкопленочной технологии и размещенный на индикаторной панели. Затворы транзисторов соединяются со строками матрицы, а истоки со столбцами.

В

момент поступления положительного импульса на строку открываются транзисторы, связанные с ячейками данной строки. Конденсаторы тех ячеек, которые должны изменить свое состояние заряжаются под действием напряжения, подаваемого на соответствующие столбцы. При переходе к следующей строке, транзисторы предыдущей закрываются, а так как ячейка практически не потребляет тока, то ее состояние остается неизменным до следующего цикла сканирования, то есть в течение кадра.

Для того, чтобы предотвратить деградацию участков жидкого кристалла вследствие электролиза, напряжение на них должно периодически менять знак. С этой целью через кадр полярность импульсов, поступающих на столбцы меняется на противоположную.

В такой матрице ячейки (пиксели) оказываются электрически изолированными друг от друга, что обеспечивает хороший контраст изображения. Сохранение напряжения после снятия управляющего воздействия позволяет использовать жидкокристаллические вещества с малым временем релаксации. Это обеспечивает небольшое время отклика панели и возможность воспроизведения быстроменяющихся изображений.

В цветных LCD панелях каждый пиксель выполняется на основе трех независимо управляемых ячеек с соответствующими светофильтрами. При сложении красного, синего и зеленого цветов с различными интенсивностями формируются вся цветовая гамма в видимом диапазоне.

Н
овым направлением в системах отображения информации, работающих на отражение является использование так называемых электронных чернил. Базовыми элементами дисплеев на их основе являются микрокапсулы, внутри которых находятся окрашенные частицы двух цветов – белые, заряженные положительно и черные с отрицательным зарядом (рис. 3.27). Внутреннее пространство микрокапсулы заполнено прозрачной жидкостью.

Слои микрокапсул расположены между двумя рядами взаимно перпендикулярных электродов строк и столбцов, верхние из которых прозрачны. При подаче разности потенциалов на строку и столбец, в точке их пересечения возникает электрическое поле. Окрашенные частицы собираются у электрода с противоположным знаком потенциала. При этом соответствующая точки изображения (пиксел) окрасится в черный, либо в белый цвет, так как пигментные частицы, сгруппировавшиеся в верхней части микрокапсулы, скроют от наблюдателя нижний слой.

Дисплеи на базе электронных чернил, которые часто называются цифровой бумагой, способны сохранять изображения и при отсутствии питания, подача напряжения необходима лишь для изменения состояния пиксела. В качестве подложки используются: стекло, пластик, металлическая фольга и другие материалы. Такие устройства могут быть сделаны гибкими и имеют очень малую толщину.

В настоящее время недостатками устройств отображения на базе электронных чернил являются большое время переключения пиксела (0,5 – 1 сек.) и ограниченное количество воспроизводимых оттенков серого.

Контрольные вопросы.

    С какой целью последовательно со светодиодом при его подключении к источнику напряжения устанавливается резистор?

    Какова скважность восьмиразрядных систем динамической индикации, функционирующих по методу компарации и мультиплексирования?

    Сколько внешних выводов у светодиодной матрицы размером 5×7?

    В каком случае система скрещенных поляризаторов будет прозрачной – при наличии, либо при отсутствии жидкокристаллического вещества между ними?

    Чем обусловлена необходимость двуполярного напряжения для управления ЖКИ?

    Чем объясняется более высокая контрастность активной ЖКИ панели по сравнению с пассивной?

Уже более 7 лет (с 2001 года) мы производим ЖК индикаторы в России. За это время мы установили и запустили в работу самое современное НАДЕЖНОСТЬ и КАЧЕСТВО нашей продукции оценили более 1000 клиентов из России, стран СНГ и Европы. Мы не экономим на качестве в угоду дешевизне и не пропускаем ни одну из технологических операций контроля. Более того, мы делаем дополнительный контроль качества на этапах сборки. Мы действительно гордимся тем, чего достигли в этом направлении. Наша продукция работает в Сибири и на Крайнем Севере. Но самый главный наш капитал - это люди. Мы по-праву считаем, что ЗНАЕМ КАК ПРОИЗВОДИТЬ ЖК ИНДИКАТОРЫ БОЛЬШЕ ВСЕХ В РОССИИ!

Если Вы покупаете ЖК индикаторы у нас, то Вы получаете некоторые преимущества перед другими.

Чем наши ЖК индикаторы отличаются от стандартных китайских и какие преимущества работы с нами:

1) Широкий ассортимент ЖК индикаторов всегда на складе!! Отгрузка в день оплаты!
2) Реальная(!) работоспособность при низких и высоких температурах
в отличие от импортных аналогов. Все наши индикаторы имеют исполнения с рабочим диапазоном температур от -30 до + 70 градусов Цельсия .
3) В наших буквенно-цифровых ЖК индикаторах дополнительно зашит белорусский/украинский/казахский знакогенераторы помимо стандартных русско/английских символов. Также удобной особенностью является использование в наших ЖК индикаторах знакогенератора 5 х 8 точек , в следствие чего все буквы кириллицы выглядят понятнее и больше !
4) Дополнительная страница знакогенератора в кодировке Win-CP1251 (для буквенно-цифровых ЖК индикаторов) позволяет существенно упростить программирование наших индикаторов при написании программ в среде Microsoft Windows.
5) Гибкость и оперативность в удовлетворении требований Заказчика по СПЕЦИАЛЬНЫМ МОДИФИКАЦИЯМ ИЗДЕЛИЙ . Все это благодаря собственному производству и слабой зависимости от таможни.
6) Оперативное изготовление образцов и серийных партий.
7) Оперативная и квалифицированная техническая поддержка на!
И ОЧЕНЬ ВАЖНО: НАШИ ЦЕНЫ УСТАНОВЛЕНЫ В РУБЛЯХ И ОЧЕНЬ СЛАБО ЗАВИСЯТ ОТ КУРСА ДОЛЛАРА!

Жидкие кристаллы - это вещества, проявляющие в определенном температурном интервале свойства как жидкости, так и кристаллов. Они способны в жидком состоянии сохранять упорядоченность молекул (по­добно кристаллам). Для создания индикаторы на жидких кристаллах используются так называемые нематические жидкие кристаллы, которые являются структурной разновидностью данного класса веществ. Материалом для них служат смеси органических соединений, молекулы которых формируются в упорядоченные решетки.

Тонкий слой ЖК вещества (десятки микрон), помещенный, например, между двумя стеклянными пластинами, довольно хорошо пропускает свет. Однако толстые слои жидкости кристаллов (несколько миллиметров) практически непрозрачны. Это связано с заметными тепловыми беспорядочными колебаниями больших групп молекул, что приводит к изменениям показателя преломления и в конечном счете сильному рассеянию света в жидкокристаллической среде. Особенный интерес представляет изменение оптических характеристик жидких кристаллов под действием внешнего электромагнитного поля. Именно это свойство используется для построения элементов индикации на основе тонких прозрачных слоев жидкокристаллических веществ.

Рис. 1. Жидкокристаллический индикатор на эффекте динамического расстояния:

1-прокладка; 2 - жидкие кристаллы; 3 - отражающее покрытие; 4 - заднее стекло; 5 - общий электрод; 6 - прозрачные электроды сегментов; 7 - переднее стекло

Рис. 2. Жидкокристаллический индикатор, основанный на эффекте вращения плоскости поляризации слоем жидких кристаллов, исчезающем под действием электрического поля (твист-эффект):

1- стеклянная ячейка; 2 - отражающее покрытие; 3-поляроидная пластина с вертикальной плоскостью поляризации; 4-жидкие кристаллы; 5 - прокладка; б - прозрачные электроды; 7 - поляроидная пластина с горизонтальной плоскостью поляризации

Существуют два принципа (эффекта) работы индикаторы на жидких кристаллах. Первый из них состоит в том, что при приложении электрического поля к тонкому слою ЖК вещества, заключенному между двумя стеклянными пластинками, происходит разрушение упорядоченной структуры жидких кристаллов, что вызывает диффузное рассеяние света в этой области (эффект динамического рассеяния). В результате прозрачный жидкокристаллический слой становится мутным и при внешнем освещении возникает контраст между возбужденным участком жидкости кристаллов и невозбужденным (фоном). При снятии внешнего электрического поля первоначальная структура жидких кристаллов восстанавливается и указанный контраст исчезает.

Как показано на рис. 1, принципиально жидкокристаллические индикаторы состоят из двух плоскопараллельных стеклянных пластин, между которыми находится слой жидких кристаллов толщиной 12- 20 мкм. На одной из стеклянных пластин прозрачным токопроводящим покрытием нанесен рисунок цифры, который представляет собой конфигурацию в виде сегментов, с помощью которых можно воспроизвести цифры от 0 до 9. На другой пластине прозрачным токопроводящим покрытием нанесен электрод, являющийся общим для цифр. Обе пластины покрытыми поверхностями обращены друг к другу.

Существуют индикаторы, работающие в отраженном («на отражение») и проходящем («на просвет») свете. В первом случае на заднее стекло ИЖК наносится отражающий слой, во втором - за индикатором должен быть использован дополнительный источник света.

При подаче управляющего напряжения жидкие кристаллы в зоне действия электрического поля теряют прозрачность, и если задняя отражающая поверхность белая, то наблюдатель видит темную цифру на светлом фоне. Если задний отражатель имеет черный цвет и внутренние поверхности корпуса также зачернены, то матово-светлое изображение цифры будет хорошо заметно на черном фоне.

При работе прибора на просвет изображение цифры более темное, чем фон. Если при этом мощность установленного источника света составляет 0,5 Вт, то яркость жидко кристаллического инди катора становится сравнимой с яркостью газоразрядного или светодиодного табло, используемого в условиях обычной освещенности.

Выводы от сегментов выполнены в виде износостойких токопроводящих дорожек на стекле. Соединение выводов табло с элементами схемы управления осуществляется с помощью разъема.

Другим принципом, используемым для создания табло на жидких кристаллах, является эффект вращения плоскости поляризации поляризованного света слоем жидких кристаллов, исчезающий под дей­ствием электрического поля (твист-эффект). Индикаторы, работающие на этом принципе, получают, помещая капельку жидких кристаллов между двумя скрещенными поляроидными пластинами, которая растекается между ними в виде тонкой пленки. Сами скрещенные поляроиды имеют взаимно перпендикулярные плоскости поляризации света и поэтому являются совершенно непрозрачными. Но если между этими пластинами имеется слой неметаллических жидких кристаллов, которые п результате технологической обработки приобрели свойство вращения плоскости поляризации проходящего света на 90°, то вся эта оптическая система получается прозрачной (рис. 2).

При приложении электрического поля все молекулы жидких кристаллов ориентируются вдоль поля и эффект вращения плоскости поляризации исчезает. В результате через систему, показанную на рис. 2, пропускание света прекращается. Если возбуждается не весь слой жидких кристаллов, а определенные участки в виде символа или цифры, то изображение данного символа (цифры) будет темным в проходящем свете по сравнению с невозбужденной областью (фоном). Этот принцип получения индикации является более прогрессивным, так как даст значительный выигрыш в мощности потребления и позволяет получать более высокий контраст. В большинстве серийно выпускаемых типов жидкокристаллические индикаторы использован данный принцип.

Возбуждение ЖК слоя в индикаторах осуществляется переменным напряжением синусоидальной формы или формы типа меандр, с эффективным значением (в зависимости от типа) от 2,7 до 30 В и частотой 30-1000 Гц. Постоянная составляющая напряжения не допускается из-за появления электролитического эффекта, что ведёт к резкому сокращению срока службы приборов индикаторы. Основным параметром ИЖК, отражающим качество его работы, является контраст знака по отношению к фону К, который определяется как отношение интенсивностей света, выходящего из ИЖК, в исходном (невозбужденном) и возбужденном состояниях. Контраст измеряется с помощью специальной оптической системы на основе микроскопа с встроенным фотоэлектронным умножителем на выходе. Для устранения внешней засветки объектив микроскопа защищен зачерненным конусом, который направлен на измеряемый индицикатор. Плоскость индикат. расположена перпендикулярно оптической оси микроскопа и освещается специальной лампой подсветки, поток которой через конденсатор направлен к измеряемому образцу под углом 45°. С помощью микроамперметра фиксируют два значения тока ФЭУ: при неработающем индикаторе и при приложенном к сегментам управляющем напряжении. Контраст, %, вычисляется по формуле

К=(Iф -Iз)100/Iф,

где Iф - ток фона - фототок фотоэлектронного умножителя при неработающем индикаторе; I3 - ток знака - фототок фотоэлектронного умножителя при приложенном к сегментам номинальном управляющем напряжении (изображение знака темнее фона). Значение К современные серийные индикаторы имеют порядка 83-90 %. Реже контраст выражают в относительных единицах (отн. ед.): К=Iф/I3.

Чем выше внешняя освещенность, тем ярче изображение на индикаторе. Контраст от освещенности практически не зависит.

Основными параметрами жидкокристаллических цифро-знаковых индикаторов являются:

контраст знака по отношению к фону К-отношение разности коэффициента яркости фона и знака индикатора к коэффициенту яркости фона, выраженное в процентах;

ток потребления IПОТ - среднее значение переменного тока, протекающего через сегмент при приложении к нему номинального напряжения управления рабочей частоты;

напряжение управления Uупр - номинальное значение эффективного переменного напряжения, приложенного к сегментам индикат.;

рабочая частота напряжения управления fраб;

минимальное напряжение управления Uупр- минимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданный контраст знака по отношению к фону;

максимально допустимое напряжение управления Uупрmax- максимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданная надежность индикатора при длительной работе;

время реакции tреак - интервал времени при включении, в течение которого ток потребления увеличивается до 0,8 максимального значения;

время релаксации tрел - интервал времени при выключении, в течение которого ток потребления снижается до 0,2 максимального значения.

Важнейшей характеристикой цифро-знакового ИЖК как прибора отображения информации является зависимость контраста знака от напряжения управления. С увеличением напряжения контраст круто растет до порогового значения, после чего увеличение контраста с увеличением Uупр практически не происходит. Значение Uупрmin выбирается на пологом участке кривой вблизи порога. Отметим, что контраст знака индикатора является функцией эффективного значения Uупр и практически не зависит от его формы.

Жидкокристаллический индик. как элемент электрической цепи эквивалентен конденсатору. Вследствие этого вольт-амперная характеристика Iпот=f(Uупр) при номинальной частоте управляющего напряжения близка к линейной, а частотная характеристика Uпотр = ф(fраб) имеет вид монотонно возрастающей кривой. Постоянная составляющая управляющего напряжения не должна превышать 1 % эффективного значения Uупр.

Рис. 3. Временная диаграмма нарастания и спада тока потребления жидкокристаллического индикатора (б) при подаче управляющего переменного напряжения (а)

Важной особенностью ЖК индикатора является низкий ток потребления - единицы или сотни микроампер (в зависимости от принципа работы). В интервале рабочих температур ток потребления несколько увеличивается с ростом температуры. Жидкокристаллический индикат. имеет низкое быстродействие, связанное с инерционными процессами перестройки структур органических кристаллов. Быстродействие существенно зависит от температуры. В зоне температур, близких к нижнему пределу, быстродействие резко падает. Измерения временных параметров tpеак и tрел, приводимых в таблицах, производятся на уровне соответственно 0,8 и 0,2 установившегося значения, как показано на рис. 3. Проверку времени реакции и релаксации серийных приборов производят визуально по появлению и исчезновению (при прямом наблюдении) знаков при подаче на них прерывистого напряжения управления с длительностью воздействия 800 мс и длительностью паузы 800 мс.Такие индикаторы работают в весьма узком интервале температур. Подавляющее большинство жидкокристаллических индикаторов не работает при окружающей температуре ниже +1 °С, так как в этих условиях материал переходит в состояние полутвердого кристалла. При приближении к нижнему температурному пределу индикат. реагирует на приложение напряжения все медленнее и в конце концов полностью теряет работоспособность. Индикаторы восстанавливают свои характеристики после возвращения их из среды с низкой температурой в среду с температурой, соответствующей температуре рабочего диапазона. В связи с этим хранение индикаторов разрешается при температуре до -40 °С.

По числу разрядов в одном корпусе цифро-знаковые индикаторы делятся на 1-разрядные, 4-разрядные, 6-разрядные, 9-разрядные. Нумерация разрядов принята возрастающей слева направо.

Существуют также табло, отображающие различные символы, специальные знаки и надписи.

Цифро-знаковые табло изготавливаются в пластмассовых корпусах или из стекла с компаундным упрочнением по периметру с выводами под распайку или под разъем.

В процессе эксплуатации следует избегать попадания на контактную площадку влаги и пыли, вызывающих межэлектродные замыкания. Очищать поверхность индикатора рекомендуется чистым батистом, слегка смоченным этиловым спиртом.

Система обозначений жидкокристаллических индикаторов содержит несколько букв и цифр. Сочетание ИЖК означает: индикат. жидкокристаллический. Четвертый элемент обозначения: буква Ц означает- цифровой, а С - символьный. Пятый элемент - цифра, указывающая номер разработки. Цифра после дефиса указывает число разрядов индикатора, а число через косую дробную черту соответствует высоте в миллиметрах цифры (символа) в разряде.

Приборы, разработанные до введения описанной системы, обозначены иначе. Например, наименование ЦИЖ-5 расшифровывается следующим образом: цифровой индикатор жидкокристаллический, номер раз­работки 5, а ИЖК-2 - индикатор жидкокристаллический, номер разработки 2.

Использование жидкокристаллических индикаторов в радиоэлектронной

аппаратуре стимулируется рядом факторов: низкими токами потребления и напряжениями управления, совместимостью работы с интегральными микросхемами, низкой стоимостью.

Возможными областями их применения являются: индикаторные устройства измерительной аппаратуры, электронные часы и микрокалькуляторы, информационные панели и указатели. Весьма сложным аспектом применения жидкокристаллических приборов являются средства управления (особенно это относится к многоразрядным индикаторам). На рис. 4 показана схема возбуждения сегментов сигналом переменного напряжения. Устройство состоит из двух логических схем И с двумя входами DD2, DD3, инвертора DD1 и ключа-формирователя из транзисторе VT. На коллектор транзистора подается напряжение, равное двойной амплитуде номинального переменного напряжения возбуждения данного ЖК индикатора. С транзистора VT на сегмент индикатора снимается однополярное переменное напряжение прямоугольной формы амплитудой 40 В. Для уничтожения постоянной составляющей импульсного питающего напряжения (она недопустима из физических условий работы жидких кристаллов) к общему электроду прикладывается постоянное напряжение 20 В.

На вход DD2 подается напряжение возбуждения с частотой fв=30-50 Гц, а на вход DD3 - напряжение гашения с частотой fг = 10-40 кГц. При низком логическом уровне управляющего сигнала открывается DD2 и транзистор работает в импульсном режиме с частотой, соответствующей частоте возбуждения ЖК сегмента. Управляющий сигнал с высоким логическим уровнем, поступающий с дешифратора на управляющий вход, открывает DD3. В результате устройство формирует напряжение повышенной частоты, на которую жидкокристаллический сегмент не реагирует. С учетом того, что устройство управления должно быть соизмеримо по потребляемой мощности с жидкокристаллическим индикатором, все логические схемы выполнены на основе КМОП-структур.

Рис. 4. Схема возбуждения сегментов ЖК индикатора переменным напряжением различной частоты

Кроме описанного используется также другой тип устройства возбуждения жидкокристаллических индикаторов. Его схема показана на рис. 5. На входы логических схем И DD2 и DD3 от внешнего генератора подаются импульсные напряжения с частотой f=l5-25 Гц, сдвинутые по фазе относительно друг друга на 180град. В зависимости от уровня управляющего сигнала на сегмент индикатора через ключ-формирователь (транзистор VT1) прикладывается напряжение прямоугольной формы, прямое либо сдвинутое по фазе. На общий электрод индикатора через другой ключ-формирователь (транзистор VT2) постоянно подается сигнал одной фазы.

При совпадении фаз на электродах сегмента последний не возбуждается; при различии фаз происходит возбуждение сегмента. Отметим, что фазовый способ управления позволяет уменьшить напряжение питания индикатора в 2 раза.

При использовании многоразрядных индикаторов требуется большое число внешних соединений, необходимых для управления сегментов. Это заставляет прибегать к созданию мультиплексного управления. На рис. 6 показан принцип управления 4-разрядным цифровым индикатором с разделенными общими электродами для каждого разряда, который заключается в объединении идентичных сегментов по всем разрядам и последовательной адресации данных в соответствующие разряды. Процесс отображения 4-разрядного числа осуществляется по тактам В каждом такте переменное управляющее напряжение прикладывается к шине управления сегментов и к линии общего электрода того разряда, который возбуждается в данном такте. Благодаря большому времен» релаксации жидких кристаллов цифры разрядов в период между тактами возбуждения продолжают читаться без приложения напряжения.

ЖК индикатор WH1602B

WH1602B-YYK-CTK - это ЖК индикатор 16x2 с латинским и кириллическим шрифтом и HD44780-совместимым интерфейсом.

ЖК индикатор WH1602B-YYK-CTK 450 р. 350 р. В корзину

форме заказа .

ЖК индикатор WH1602B-YYK-CTK PLS 550 р. 400 р. В корзину

Внимание! У Вас отключено выполнение JavaScript. Нормальная работа системы заказа и корзины невозможна. Если по каким-то причинам Вы не можете включить JavaScript, просто перечислите заказываемые товары в форме заказа .

ЖК индикатор 16x2 WH1602B-YYK-CTK c запаянными "низкими" (4мм) штыревыми разъемами - специально для LCD Keypad Shield .

  • Тип: знакосинтезирующий (текстовый)
  • Количество символов: 2 строки по 16 символов
  • Подсветка: светодиодная, желто-зеленая
  • Шрифт: латинский и кириллический
  • Габариты (мм): 80x36x14
  • Область вывода (мм): 56x11
  • Напряжение питания (В): 5
  • Интерфейс: HD44780 совместимый

Более полное техническое описание доступно в документации производителя.

Подключение к Arduino

WH1602B-YYK-CTK, как и другие ЖК индикаторы с HD44780 совместимым интерфейсом, легко подключается к любой Arduino-совместимой плате.

Одним из вариантов является применение LCD Keypad Shield , но возможно, также и непосредственное подключение (потребует больше свободных выводов).

Дисплей имеет следующее расположение выводов:

Модуль может работать в 4-х битном режиме, что уменьшает число необходимых выводов - нужно подключить только Gnd, Vin, VO, RS, RW, E, DB4-DB7, и при необходимости подсветку. Также, поскольку обычно обмен данными идет только в одну сторону - от микроконтроллера к ЖК дисплею, вывод RW может не подключаться к Arduino, а быть подключенным к Gnd.

Возможный вариант подключения представлен на рисунках. На втором рисунке «сэкономлен» один вывод за счет подключения RW к Gnd. Итого, в минимальном варианте для подключения требуется 6 свободных портов Arduino, и это могут быть любые порты - не обязательно те же, что и на рисунках.

Переменный резистор Contrast номиналом 10-20 кОм служит для регулировки контрастности.

Обращаем внимание на резистор LCD backlight - он ограничивает ток в цепи подсветки, а значит, от его номинала зависит ее яркость. Сопротивление такого резистора при питании подсветки от +5В должно быть порядка 6-8 Ом, а сам ток около 100 мА.

Пример вывода на ЖК дисплей, подключенный согласно второго рисунка:

#include

//Создаем объект для работы с дисплеем.
//При создании указываем номера портов
//в порядке RS, E, DB4, DB5, DB6, DB7
LiquidCrystal lcd(12 , 10 , 5 , 4 , 3 , 2 ) ;

void setup() {
//Выставлем число столбцов и строк
lcd.begin (16 , 2 ) ;
//Выводим текст
lcd.print ("hello, world!" ) ;
}

void loop() {
//Выставляем курсор во 2-ю строку,
//1й столбец (счет идет с 0, поэтому
//строка номер 1, стобец номер 0)
lcd.setCursor (0 , 1 ) ;
//Выводим число секунд со старта
lcd.print (millis() / 1000 ) ;
}

Вывод русского текста имеет ряд особенностей в связи с тем, что исходный код в среде Arduino сохраняется в кодировке UTF-8, которая, конечно, не соответствует таблице символов в ЖК дисплее. Для вывода русских символов можно указывать их коды в восьмеричной системе в соответствии с синтаксисом C/C++, ориентируясь на таблицу из документации. Пример такого вывода:

//вывод строки "ЖК дисплей"
lcd.print ("\243 K \343 \270 c\276 \273 e\271 " ) ;

Здесь "\243", "\343", "\270", "\276", "\273", "\271" - коды символов "Ж", "д", "и", "п", "л", "й". Обратите внимание, что символы "K", "c" и "e" - это символы латинского алфавита.

Более удобным может быть использование библиотеки LiquidCrystalRus , которая, хоть и занимает несколько дополнительных десятков байт flash-памяти, зато позволяет непосредственно использовать русские символы в кодировке UTF-8 при выводе на дисплей. Библиотека доступна также и на сайте ее разработчика.


ЖИДКОКРИСТАЛЛИЧЕСКИЕ ИНДИКАТОРЫ

Жидкокристаллические индикаторы (ЖКИ) управляют отражением и пропусканием света для создания изображений цифр, букв, символов и т.д. В отличии от светодиодов (Light-Emitting Diodes, LEDs), жидкокристаллические индикаторы не излучают свет.
Основу ЖКИ составляют жидкие кристаллы (ЖК), молекулы которых упорядоченны послойно определенным образом между двумя стеклянными пластинами. В каждом слое сигарообразные молекулы ЖК выстраиваются в одном направлении, их оси становятся параллельны (рис.1).

рис. 1 Один слой молекул ЖК. Все молекулы параллельны друг другу.
Стеклянные пластины имеют специальное покрытие, такое что направленность молекул в двух крайних слоях перпендикулярна. Ориентация каждого слоя ЖК плавно изменяется от верхнего к нижнему слою, формируя спираль (рис.2). Эта спираль "скручивает" поляризацию света по мере его прохождения через дисплей.


рис. 2 Несколько слоев молекул ЖК, упорядоченные так,
что поляризованный свет "скручивается", проходя через них.
Молекулы в разных слоях выстраиваются по спирали.

Под действием электрического поля молекулы ЖК переориентируются параллельно полю. Этот процесс называется твист-нематическим полевым эффектом (twisted nematic field effect, TNFE). При такой ориентации поляризация света не скручивается при прохождении через слой ЖК (рис. 3а и 3б). Если передний поляризатор ориентирован перпендикулярно заднему, свет пройдет через включенный дисплей, но заблокируется задним поляризатором. В этом случае ЖКИ действует как заслонка свету.
Отображение различных символов достигается избирательным травлением проводящей поверхности, предварительно созданной на стекле. Не вытравленные области становятся символами, а вытравленные - фоном дисплея.


рис. 3а "Выключенное" состояние ЖКИ.
ЖК молекулы формируют спираль, скручивая поляризацию света.


рис. 3б "Включенное" состояние.
Электрическое поле переориентирует ЖК молекулы так
что они не изменяют поляризацию света.

Символы создаются из одного или нескольких сегментов. Каждый сегмент может быть адресован (запитан) идивидуально, чтобы создать отдельное электрическое поле. Таким образом прохождение света управляется электрически, включая и отключая необходимые сегменты. В неактивной части дисплея направленность молекул остается спиральной, формируя фон. Запитанные сегменты составляют символы, контрастирующие с фоном.
В зависимости от ориентации поляризатора, ЖКИ может отображать позитивное или негативное изображение. В дисплее с позитивным изображением передний и задний поляризатор перпендикулярны друг другу, так что незапитанные сегменты и фон пропускают свет с измененной поляризацией, а запитанные препятствуют прохождению света. В результате - темные символы на светлом фоне.
В дисплее с негативным изображением поляризаторы параллельны, "в фазе", препятствуют прохождению света с повернутой поляризацией, так что незапитанные символы и фон темные, а запитанные - светлые.
Рефлективный ЖКИ (reflective LCD) имеет отражатель (рефлектор) за задним поляризатором, который отражает свет, прошедший через незапитанные сегменты и фон. В негативных рефлективных дисплеях свет отражается через запитанные, "включенные" сегменты. Трансмиссивные дисплеи (transmissive LCD) используют те же принципы, но фон или сегменты становятся ярче за счет использования задней подсветки.


рис. 4 Основные компоненты и конструкция рефлективного ЖКИ.

Режимы отображения ЖКИ определяют то, как индикатор управляет светом для создания изображения. Чтобы выбрать оптимальный режим для конкретного приложения необходимо рассмотреть типичные условия освещения индикатора (см. таблицу 1).

Таблица 1. Режимы отображения ЖКИ

Режим отображения Изображение Применение Прямой солнечный свет Офисное освещение Приглушенный свет Очень слабый свет
Рефлективный позитивный Темные сегменты на светлом фоне Без подсветки. Обеспечивает лучший фронтальный контраст и стабильность. Великолепно Очень хорошо Плохо Очень плохо
Трансфлективный позитивный Темные сегменты на сером фоне Может освещаться отраженным внешним светом или подсветкой. Великолепно (без подсветки) Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка)
Трансфлективный негативный Светло-серые сегменты на темном фоне Требуется яркое освещение или подсветка. Часто используется с цветным трансфлектором (полупрозрачный отражатель). Хорошо (без подсветки) Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка)
Трансмиссивный позитивный Темные сегменты на подсвеченном фоне Разработан для плохих условий освещения, возможно использование при внешнем освещении. Хорошо (без подсветки) Хорошо (подсветка) Очень хорошо (подсветка) Великолепно (подсветка)
Трансмиссивный негативный Подсвеченные сегменты на темном фоне Не может быть использован без подсветки. Плохо (подсветка) Хорошо (подсветка) Очень хорошо (подсветка) Великолепно (подсветка)

Рефлективные (работающие на отражение) индикаторы
Обычно рефлективные ЖКИ используют режим отображения с темными символами на светлом фоне (так называемое позитивное изображение).
В индикаторе с позитивным изображением передний и задний поляризаторы находятся в противофазе, или перекрестно поляризованы на 90°.
Если сегмент "выключен", внешний свет идет по слелующему пути: проходит через вертикальный поляризатор, через прозрачный электрод сегмента, через ЖК молекулы которые скручивают его на 90 °, через прозрачный общий электрод, через горизонтальный поляризатор, и попадает на рефлектор, который посылает свет обратно по тому же пути (рис. 5а).


рис. 5а Рефлективный индикатор в выключенном состоянии.
Свет проходит через горизонтальный поляризатор и отражается обратно.

Если сегмент "включен", внешний свет не изменяет своей поляризации при проходе через слой жидких кристаллов. Таким образом поляризация света противоположна заднему поляризатору, что не дает свету пройти к отражателю. Так как свет не отражается, получается темный сегмент (рис. 5б).


рис. 5б
с горизонтальным поляризатором, так что он не доходит до рефлектора.

Рефлективные индикаторы очень яркие, с отличным контрастом и имеют широкий угол обзора. Они требуют хорошего внешнего освещения и не исползуют искуственной задней подсветки (хотя в некоторых моделях применяют подсветку сверху). Благодаря малым токам потребления рефлективные индикаторы часто используются в устройствах с питанием от батареек.

Трансмиссивные (работающие на пропускание) индикаторы
Трансмиссивные ЖКИ не отражают свет. Напротив, они создают изображение, управляя светом искуственного источника освещения, расположенного позади индикатора.
В трансмиссивных индикаторах передний и задний поляризаторы находятся "в фазе" друг с другом (параллельны). В выключенным сегменте поляризованый свет подсветки скручивается на 90° молекулами ЖК и оказывается в противофазе с передним поляризатором. Поляризатор блокирует свет, создавая темный сегмент.


рис. 6а В выключенном состоянии свет не проходит
сквозь трансмиссивный дисплей.

Если сегмент включен, свет не скручивается, оказываясь в фазе с передним поляризатором, и проходит через него, создавая световой рисунок. Таким образом трансмиссивный дисплей создает светлое изображение на темном фоне (негативное изображение).


рис. 6б Во включенном состоянии свет находится в противофазе
с горизонтальным поляризатором, та что он не доходит до рефлектора.

Трансмиссивные индикаторы должны иметь заднюю подсветку, чтобы гарантировать равномерное свечение сегментов. Они хороши для использования в условиях приглушенного или слабого освещения. В условиях прямого солнечного света подсветка не может преодолеть солнечных лучей и изображение не заметно.

Трансрефлективные (работающие на пропускание и отражение) индикаторы
Трансрефлективные индикаторы используют белый или серебрянный полупрозрачный материал, который отражает часть внешнего света, а также пропускает свет задней подсветки. Поскольку эти индикаторы как отражают, так и пропускают свет, они могут использоваться в широком диапазоне яркостей освещения. Примером могут служить индикаторы мобильных телефонов - они читаемы как при ярком свете, так и в полной темноте. Трансфлективные дисплеи имеют более низкую контрастность по сравнению с рефлективными, так как часть света проходит сквозь отражатель.

Варианты подсветки (backlight)
Ниже представлены варианты подсветки ЖКИ.


рис. 7

Таблица 2. Сравнение методов подсветки

Свойство Светодиодный Лампами накаливания Электролюминесцентный
Яркость Средняя Высокая Малая - Средняя
Цвет Красный - Янтарный - Зеленый Белый Белый
Размер Малый Малый - Средний Тонкий
Крепление SMD - Радиальный Радиальный - Осевой Осевой
Напряжение 5 Вольт 1,5 В - 28 В 45 В - 100 В
Ток при 5 В (на кв. дюйм) 10 - 30 мА 20 мА 1 - 10 мА
Температура Теплый Горячий Холодный
Стоимость (на кв. дюйм) 0,10 - 1,00 долл. 0,10 - 0,80 долл. 0,50 - 2,00 долл.
Распространение света Направленное Сферическое Ламбертское
Ударопрочность Отличная Низкая Отличная
Срок службы (часов) 100 000 150 - 10 000 500 -15 000

Температура использования и хранения
Анализ температурного диапазона очень важен при описании ЖКИ.
Все ЖК материалы имеют строго определенный верхний предел рабочей температуры, или изотропический предел. Выше этого предела молекулы ЖК принимают произвольную ориентацию. Изотропические условия делают позитивное изображение полностью темным, а негативное - прозрачным. Изотропическая температура называется температурой нематическо-изотропического перехода, или N-I перехода.
ЖКИ могут восстанавливаться после короткого воздействия изотропической температуры, хотя температуры свыше 110°C разрушают внутреннее покрытие индикатора.
Нижний предел температурного диапазона ЖКИ не так хорошо определен, как верхний. При низких температурах время срабатывания индикатора увеличивается, так как замедляется движение молекул и возрастает вязкозть ЖК вещества.
При очень низких температурах ЖК вещество переходит в твердое, или кристаллическое состояние. Эта температура называется температурой кристаллическо-нематического перехода, или C-N перехода. Однако ЖК материал "суперхолодный", воспринимает температуры ниже C-N предела, фактически поворачивая кристаллы вещества. (Обычно при воздействиях до -60°C). В результате ЖКИ часто работоспособны при температурах ниже их C-N перехода.
Эффект низких температур обычно обратим. К примеру, ЖКИ опущенный в жидкий азот возвращается в нормальное состояние после короткого периода нагрева.
В добавление, ЖК материалы имеют низкий температурный коэффициент. Этот коэффициент важен для мультиплексных индикаторов по причине низкого значения действущего напряжения управления. За пределами температурного диапазона может потребоваться температурная компенсация.

Нагреватели
Индикаторы с интегральными нагревателями могут работать при температурах до -55°C. Нагреватели требуют температурно-управляемого источника питания. При использовании нагревателями время отклика индикатора при низких температурах остается таким же, как и при 0°C. Увеличение мощности нагревателя уменьшает время нагрева. Обычно требуется мощность между 2 и 3 ваттами на квадратный дюйм поверхности индикатора.

Внешнее освещение
Как уже обсуждалось, яркость внешнего освещения индикатора очень важна. Выбор типа индикатора осуществляется именно исходя из условий внешнего освещения.

Внешние воздействия
Существует множество модификаций ЖКИ, стойких к различного рода внешним воздействиям, так как этого требуют военные стандарты. К примеру существует "высокостабильное" покрытие для защиты от высокой температуры и влажности. Покрытие - "барьер" препятствует загрязнению проводящими веществами, могущими вызвать короткое замыкание в индикаторе. Тонкопленочные нагреватели могут использоваться в низкотемпературных приложениях. Правильный выбор соединителя также помогает преодолеть внешние воздействия.

Угол и направление обзора

рис. 8 Конус обзора описывает область,
в пределах которой наблюдатель может прочитать информацию на дисплее.

При выборе ЖКИ следует определить как наблюдатель будет смотреть на индикатор: Будет ли он сидеть или стоять? Под каким углом расположен дисплей? Какая требуется ширина угла обзора? Дело в том, что контрастность изображения на индикаторе зависит от относительного расположения дисплея и наблюдателя.
Обычно направление зрения описывается аналогично циферблату часов. Если наблюдатель смотрит сверху, это называется 12 часов, снизу - 6 часов, справа - 3 часа, слева - 9 часов. Критические углы зрения (наклона индикатора) зависят от направления обзора и могут быть проиллюстрированы изоконтрастными кривыми на графике в полярной системе координат (рис. 9).
Угол обзора зависит также от толщины слоя ЖК. Большинство ЖКИ изготавливаются по второму классу с толщиной от 6 до 8 микрон. Первый класс имеет толщину от 3 до 4 микрон. Наиболее широкий угол обзора (до165°) достигается при 4-х микронной технологии. При этом также уменьшается время отклика (срабатывания) ЖКИ.


рис. 9 Изоконтрастная кривая ЖКИ.
Объективное измерение контрастности изображения под разными углами.

Контраст изображения
Контрастность главным образом определяется условиями внешнего освещения и правильностью выбора позитивного или негативного изображения. При повышении действующего среднеквадратического напряжения контрастность увеличиваетвя. Эффективность поляризатора и ЖК жидкости также способствуют лучшей контрастности.

Сегменты ЖКИ
Части ЖКИ, работающие как заслонки, включаясь и выключаясь для формирования изображений, называются сегментами.
Сегменты создаются прозрачными электродами из оксидов индия и олова, нанесенными на стекло ЖКИ. Цифры от 0 до 9 и некоторые буквы могут быть отображены на семисегментном индикаторе. Шестнадцатисегментный индикатор может отобразить цифры, все латинские и почти все русские буквы (кроме Й,Ц,Щ). Для того чтобы символы были менее угловатыми и более натуральными, используют матричные индикаторы. С их помощью можно также отображать небольшие изображения. Количество сегментов индикатора влияет на метод управления им.


рис. 10 Семисегментный дисплей,
шестнадцатисегментный дисплей
матричный дисплей 5х7

В добавление к алфавитно-цифовым символам, ЖКИ может отображать небольшие картинки, или иконки. К примеру дисплей на рис.11 отображает функции копира. Эти изображения не изменяются - они могут только вкючатся или отключатся.


рис. 11 Функциональный дисплей копировального аппарата.

Время срабатывания
ЖКИ обычно имеет время срабатывания 50 мс при 20°C, а лучшие модели - до 10 мс. Стандартный ЖКИ может отображать сигнал до 10 Гц, если требуется; невооруженным глазом тяжело отследить данные с такой частотой.

Цветные изображения
Существует несколько методов создать цветное изображение в ЖКИ (таблица 3).

Таблица 3. Цвет в ЖКИ

Двухрядное расположение выводов (Dual-In-Line, DIL)
Двухрядное расположение выводов удобно для использования в суровых условиях. DIL обеспечивает быструю, ровную установку индикатора. Выводы могут быть впаяны в печатную плату или вставлены в разъем. Эти хорошо проводящие, нержавеющие выводы обеспечивают жесткое крепление, даже при ударе или вибрации.


рис. 12 DIL выводы

Резиновый соединитель (Elastomeric, rubber connector)
Резиновый проводник представляет из себя гибкий резиновый брусочек с большим количеством поперечных проводящих прожилок (как гребенка) с очень малым шагом. Он обеспечивает быстрый монтаж / демонтаж без паянных соединений или абразивных контактов, самовыравнивание. Это соединение часто используется в небольших инструментах, где размер ограничен. Хотя оно стойко к ударам и вибрациям, резиновое соединение не стоит применять в особо арессивных средах без повышенного внимания к защите ЖКИ.


рис. 13 Резиновый соединитель

Гибкий соединитель (Flex, heat seal connector)
Как печатная плата, так и ЖКИ присоединяются к гибкому шлейфу посредством нагревания под давлением. Это соединение используется в наиболее подвижных устройствах, где смещения могут вызвать поломку жестких выводов. Гибкое соединение часто используется в очень больших ЖКИ или устройствах требующих отдельную установку платы контроллера. Популярность этого метода соединения растет и разработчики находят ему все новые применения.


рис. 14 Гибкое соединение

Общие принципы
Существует два типа контроллеров ЖКИ: прямой и мультиплексный. Оба типа имеют свои преимущества и недостатки.

Таблица 4. Сравнение прямых и мультиплексных контроллеров

Мультиплексное управление
Мультиплексное (MUX) управление уменьшает количество необходимых выводов ЖКИ. Мультиплексные дисплеи имеют более одного общего вывода (COM). Мультиплексность означает, что каждый вывод сегментов (SEG) адресует сегмент на каждом из выводов COM. Количество общих выводов называется значением мультиплексности ЖКИ.


рис. 15 Вариант организации выводов COM и SEG

Энергопотребление
Обычно ЖКИ требует очень небольшой энергии для работы - от 5 до 25 мкА при 5 В (на кв. дюйм) для TN индикатора. Искуственная подсветка или нагрев требуют дополнительной энергии.
Все ЖКИ тебуют чистого переменного управляющего напряжения. Случайное постоянное напряжение, как например постоянная составляющая в сигнале, может значительно уменьшить срок службы индикатора и должно быть ограниченно 50 мВ.

Поделиться: