Андронный или адронный коллайдер. Большой адронный коллайдер: для чего нужен, где находится

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и доказательство теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Карта с нанесённым на неё расположением Коллайдера

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн , получившая своё развитие в М-теории (теории бран), теория супергравитации , петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии » - например, теория струн , которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

История строительства

27-километровый подземный туннель, предназначенный для размещения ускорителя LHC

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году , после окончания работы предыдущего ускорителя - Большого электрон-позитронного коллайдера .

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·10 12 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·10 9 электронвольт) на каждую пару сталкивающихся нуклонов . Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов - протон-антипротонный коллайдер Тэватрон , который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии . Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита , общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года . Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

Технические характеристики

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме . Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт . Предположительные энергозатраты всего кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы .

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид . Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home .

Неконтролируемые физические процессы

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте. Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр , а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными. Английский физик-теоретик Эдриан Кент опубликовал научную статью с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10 -31 .

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля , Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене . Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи (США) был подан иск Уолтера Вагнера (англ. Walter L. Wagner ) и Луиса Санчо (англ. Luis Sancho ), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Сравнение с природными скоростями и энергиями

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах . Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности , являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени .

Примечания

  1. The ultimate guide to the LHC (англ.) P. 30.
  2. LHC: ключевые факты . «Элементы большой науки». Проверено 15 сентября 2008.
  3. Tevatron Electroweak Working Group, Top Subgroup
  4. LHC synchronization test successful (англ.)
  5. Второй тест системы инжекции прошёл с перебоями, но цели достиг . «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
  6. LHC milestone day gets off to fast start
  7. First beam in the LHC - accelerating science .
  8. Mission complete for LHC team . physicsworld.com. Проверено 12 сентября 2008.
  9. На LHC запущен стабильно циркулирующий пучок . «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
  10. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок . «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
  11. Большой адронный коллайдер возобновит работу не раньше весны - ЦЕРН . РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
  12. http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
  13. https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
  14. https://lhc2008.web.cern.ch/LHC2008/inauguration/index.html
  15. Ремонт поврежденных магнитов будет более объемным, чем казалось ранее . «Элементы большой науки» (09 ноября 2008). Проверено 12 ноября 2008.
  16. Расписание на 2009 год . «Элементы большой науки» (18 января 2009). Проверено 18 января 2009.
  17. Пресс-релиз ЦЕРН
  18. Утверждён план работы Большого адронного коллайдера на 2009-2010 годы . «Элементы большой науки» (6 февраля 2009). Проверено 5 апреля 2009.
  19. The LHC experiments .
  20. «Ящик Пандоры» открывается . Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
  21. The Potential for Danger in Particle Collider Experiments (англ.)
  22. Dimopoulos S., Landsberg G. Black Holes at the Large Hadron Collider (англ.) Phys. Rev. Lett. 87 (2001)
  23. Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
  24. Review of the Safety of LHC Collisions LHC Safety Assessment Group
  25. Критический обзор рисков ускорителей . Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
  26. Какова вероятность катастрофы на LHC?
  27. Судный день
  28. Asking a Judge to Save the World, and Maybe a Whole Lot More (англ.)
  29. Объяснение того, почему БАК будет безопасным (англ.)
  30. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-es.pdf (исп.)
  31. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-de.pdf (нем.)
  32. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-fr.pdf (фр.)
  33. H. Heiselberg. Screening in quark droplets // Physical Review D. - 1993. - Т. 48. - № 3. - С. 1418-1423. DOI :10.1103/PhysRevD.48.1418
  34. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. - 2006. - Т. 73, 114016.

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

Большой адронный коллайдер (Large Hardon Collider, LHC) — это типичный (хотя и сверхмощный) ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. БАК — это микроскоп, с помощью которого физики будут разгадывать, из чего и как сделана материя, получая сведения об её устройстве на новом, еще более микроскопическом уровне.

Многие ждали с нетерпением, а что же будет после его запуска, но нечего в принципе и не произошло — наш мир сильно скучен, чтобы случилось что-то действительно интересное и грандиозное. Вот она цивилизация и её венец творения человек, как раз получилась некая коалиция цивилизации и людей, сплотившись вместе уже на протяжении века, в геометрической прогрессии загаживаем землю, и бесчинно разрушаем всё то, то накапливалось миллионы лет. Об этом мы поговорим в другом сообщении, и так – вот он АДРОННЫЙ КОЛЛАЙДЕР .

Вопреки многочисленным и разносторонним ожиданиям, народов и СМИ всё прошло тихо и мирно. О, как же было всё раздуто, например газеты твердили от номера к номеру: «БАК = конец света!», «Путь к катастрофе или открытиям?», «Аннигиляционная Катастрофа», чуть ли не конец света пророчили и гигантскую черную дыру, в которую засосет всю землю. Видимо эти теории выдвигали завистливые физики, у которых в школе не получилось получить аттестат об окончании с цифрой 5, по этому предмету.

Вот, например был такой философ Демокрит, который в своей древней Греции (кстати, современные школьники пишут это одним словом, т.к. воспринимают это несуществующей странной , наподобие СССР, Чехословакии, Австро-Венгрия, Саксония, Курляндия и т.д. – «Древняягреция») он высказал некую теорию, что вещество состоит из неделимых частиц – атомов , но доказательство этому, ученые нашли только приблизительно через 2350 лет. Атом (неделимый) – разделить тоже можно, это обнаружили ещё спустя 50 лет, на электроны и ядра, а ядро – на протоны и нейтроны. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. На сегодняшний день физики считают, что кварки – предел деления материи и ничего меньше не существует. Известно шесть типов кварков: верхний, странный, очарованный, прелестный, истинный, нижний – а соединяются они с помощью глюонов.

Слово «коллайдер» происходит от английского collide – сталкиваться. В коллайдере два пуска частиц летят навстречу друг другу и при столкновении энергии пучков складываются. Тогда как в обычных ускорителях, которые строятся и работают вот уже несколько десятилетий (первые их модели относительно умеренных размеров и мощности, появились ещё перед второй мировой войной в 30-х годах), пучек ударяет по неподвижной мишени и энергии такого соударения гораздо меньше.

«Адронным» коллайдер назван, потому что предназначается для разгона адронов. Адроны – это семейство элементарных частиц, к которым относятся протоны и нейтроны, из них состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов – то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склееных» глюонами.

Большим коллайдер стал из-за своих размеров – это крупнейшая физическая экспериментальная установка из всех когда-либо существующих в мире, только основное кольцо ускорителя тянется более, чем на 26 км.

Предполагается, что скорость разогнанных БАКом протонов составит 0,9999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн. Суммарная энергия сталкивающихся протонов составит 14 ТэВ (14 тераэлектро-вольта, а ядер свинца – 5,5ГэВ на каждую пару сталкивающихся нуклонов. Нуклоны (от лат. nucleus - ядро) - общее название для протонов и нейтронов.

Существуют разные мнения по поводу техники создания ускорителей на сегодняшний день: одни уверяют, что она подошла к своему логическому приделу, другие же что предела совершенству нет – и различными обзорами приводят обзоры конструкций, размер которых в 1000 раз меньше, а по производительности выше БАК’а. В электронике или компьютерной технике постоянно идет миниатюризация при одновременном росте работоспособности.

Large Hardon Collider, LHC — a typical (albeit extremely) accelerator of charged particles in the beams, designed to disperse the protons and heavy ions (lead ions) and study the products of their collisions. BAC — this microscope, in which physics will unravel, what and how to make the matter of getting information about its device in a new, even more microscopic level.

Many waited eagerly, but what comes after his run, but nothing in principle and has not happened — our world is missing much that has happened is something really interesting and ambitious. Here it is a civilization and its crown of creation man, just got a sort of coalition of civilization and the people, unity, together for over a century, in a geometric progression zagazhivaem land, and beschinno destroying anything that accumulated millions of years. On this we will talk in another message, and so — that he Hadron Collider.

Despite the many and varied expectations of peoples and the media all went quiet and peacefully. Oh, how it was all bloated, like the newspaper firm by number of rooms: «BAC = the end of the world!», «The road to discovery or disaster?», «Annihilation catastrophe», almost the end of the world and things are a gigantic black hole in zasoset that all the land. Perhaps these theories put forward envious of physics, in which the school did not receive a certificate of completion from the figure 5, on the subject.

Here, for example, was a philosopher Democritus, who in ancient Greece (and, incidentally, today’s students write it in one word, as seen this strange non-existent, like the USSR, Czechoslovakia, Austria-Hungary, Saxony, Kurland, etc. — «Drevnyayagretsiya»), he had some theory that matter consists of indivisible particles — atoms, but the proof of this, scientists have found only after about 2350 years. Atom (indivisible) — can also be divided, it is found even after 50 years on the electrons and nuclei and the nucleus — protons and neutrons at. But they, as it turned out, not the smallest particles and, in turn, are composed of quarks. To date, physics believe that quarks — the limit of division of matter and anything less does not exist. We know of six types of quarks: the ceiling, strange, charmed, charming, genuine, bottom — and they are connected via gluons.

The word «Collider» comes from the English collide — face. In the collider, two particles start flying towards each other and with the collision energy beams added. While in conventional accelerators, which are under construction and work for several decades (the first of their models on moderate size and power, appeared before the Second World War in the 30-s), puchek strikes on fixed targets and the energy of the collision is much smaller.

«Hadronic» collider named because it is designed to disperse the hadrons. Hadrons — is a family of elementary particles, which include protons and neutrons, composed of the nucleus of all atoms, as well as a variety of mesons. An important feature of hadrons — that they are not truly elementary particles, and are composed of quarks, «glued» gluon.

The big collider has been because of its size — is the largest physical experimental setup ever in the world, only the main accelerator ring stretches for more than 26 km.

It is assumed that the velocity of dispersed tank will 0.9999999998 protons to the speed of light, and the number of collisions of particles originating in the accelerator every second, to 800 million total energy of colliding protons will be 14 TeV (14 teraelektro-volt, and the nuclei of lead — 5.5 GeV for each pair of colliding nucleons. nucleons (from Lat. nucleus — nucleus) — the generic name for the protons and neutrons.

There are different views on the creation of accelerator technology to date: some say that it came to its logical side, others that there is no limit to perfection — and the various surveys provided an overview of structures, which are 1000 times smaller, but higher productivity BUCK ‘ Yes. In the electronics or computer technology is constantly miniaturization, while the growth of efficiency.

Поделиться: