О выборе гидродинамического профиля жестких буерных парусов. Жесткий управляемый щелевой парус Подписи к иллюстрациям

Вопрос, вынесенный в заголовок, все еще не нашел окончательного разрешения. Первые эксперименты по замене традиционного паруса вертикальным крылом, по профилировке и конструкции близким самолетному, не принесли ожидаемого результата. Дело в том, что за сотни лет своего существования парус превратился в прекрасное многорежимное устройство для преобразования силы ветра в тягу, сообщающую движение судну или буеру. Причем он достаточно эффективно работает как на полных, так и на острых курсах, при сильном и слабом ветре, при ровном его потоке и при шквалах. Помимо этого, парус является прекрасным прибором, позволяющим рулевому с высокой точностью настраивать его в соответствии с выбранным курсом и направлением ветра, его силой, возникающим креном парусника и другими параметрами движения.

Так при чем же здесь крыло, если у паруса столько неоценимых достоинств? Дело в том, что при всех своих положительных качествах парус имеет существенный недостаток: он обладает чрезвычайно низким «качеством» - термин сугубо аэродинамический, определяющий отношение коэффициента подъемной силы (для самолетного крыла) к коэффициенту лобового сопротивления. Физически это означает, что при равных условиях крыло заданной площади создает тягу во столько раз большую, во сколько раз качество его больше качества паруса той же площади.

Если вспомнить первые аэропланы, то поперечные сечения их крыльев были практически такими же, как и паруса тонкий выпукло-вогнутый профиль с достаточно острой кромкой. Помимо того, что подобный профиль обладал весьма низким качеством, он имел и крайне неудовлетворительную характеристику-поляру: подъемная сила возникала на крыле в крайне узком диапазоне углов атаки, а критический угол был угрожающе малым, и превышение его приводило к сваливанию самолетов того времени в штопор.

Если рассмотреть сечение паруса, то можно заметить, что это тоже вогнуто-выпуклая пластина с круглым или овальным утолщением - мачтой. Профиль такого типа крайне неудовлетворительно работает на острых курсах и подчас делает невозможным движение, близкое к направлению «левентик» (носом к ветру): происходит срыв потока, сопровождающийся заполаскиванием паруса и практически полной потерей его тяги Надо отметить, что ситуация меняется на полных курсах - когда ветер дует сбоку, сбоку-сзади и сзади. В этом случае парус явно эффективнее крыла. Правда, если это крыло не механизированное.

Первые попытки создания нового типа паруса с характеристиками, близкими крылу на острых курсах и парусу - на полных, предпринимались чуть ли не два десятилетия назад. Передней кромкой его стала сама профилированная поворотная мачта, сечение которой напоминало самолетный крыльевой профиль. В ликпаз мачты вставлялся узкий парус, усиленный сквозными латами. Такая законцовка и сама мачта имели практически одинаковые хорды, а вся система в целом, по сути, представляла собой крыло с гибким закрылком. Она уже обладала целым рядом преимуществ, но все же была вынужденным вариантом, так как сковывалась требованиями правил, существовавших в то время для некоторых классов катамаранов и буеров.

Буер с механизированным паруcом-крылом:

1 - оковка (стальной лист толщиной 3 мм), 2 - мачта (дюралюминиевая труба Ø 40Х1,5 мм), 3 - краспицы, 4 - ванты (стальной трос Ø 5 мм), 5 - штаг (стальной трос Ø 5 мм), 6 - крыло, 7 - закрылок, 8 - рулевое устройство, 9 - сиденье, 10 - корпус-обтекатель (фанера толщиной 3…4 мм), 11 - задний конек, 12 - поворотная вилка заднего рулевого конька, 13 - вилка переднего конька, 14 - передний конек, 15 - поперечная балка.

Логичным поэтому представляется переход к целиком жесткому механизированному крылу по типу самолетного, с жестким же закрылком, значительно увеличивающим коэффициент «подъемной» силы такого паруса на больших углах атаки и, следовательно, на полных курсах.

Крыло с закрылком:

1 - концевая нервюра крыла (фанера толщиной 10…12 мм), 2 - лонжерон (сосновые рейки 20Х60 мм), 3 - передняя кромка (сосновая рейка сечением 30X30 мм), 4 - нервюры № 7 и № 8 (фанера толщиной 5 мм), 5 - усиленная нервюра № 6 (фанератолщиной 10…12 мм), 6 - задняя стенка крыла (сосновая доска толщиной 20 мм), 7 - укороченные нервюры № 2-5 (фанера толщиной 5 мм), 8 - укороченная корневая нервюра (фанера толщиной 12 мм), 9 - корневая нервюра закрылка (фанера толщиной 12 мм), 10 - нервюры № 2-5 закрылка (фанера толщиной 5 мм), 11 - передняя кромка закрылка (сосновый брусок сечением 40X60 мм), 12 - внутренние расчалки крыла (капроновый или льняной шпагат, стальная проволока Ø 0,3 мм), 13 - диагональный элемент закрылка (фанера толщиной 5 мм), 14 - задняя кромка закрылка (сосновая рейка сечением 20X50 мм), 15- задняя кромка крыла (сосновая рейка сечением 20Х50 мм), 16 - раскосы лонжерона (сосновые рейки сечением 20X20 мм), 17 - обтекатель (фанера толщиной 5 мм), 18 - концевая нервюра закрылка.

Поначалу предполагалось, что поворотный закрылок будет на всю длину (точнее - высоту) крыла-паруса. Однако оказалось, что гораздо выгоднее, чтобы закрылок занимал лишь около 60% высоты крыла. Дело в том, что характеристика ветра на разных уровнях неоднородна: внизу его скорость несколько меньше, чем на высоте нескольких метров, кроме того, меняется и его вектор. Это означает, что угол атаки корневой части паруса-крыла относительно направления вымпельного ветра окажется больше, нежели у его концевой части. В идеальном случае неплохо было бы иметь «дробный» закрылок по всему размаху крыла, состоящий из нескольких секций, отклоняемых на разные углы Однако практически оказалось вполне достаточным оснастить закрылком лишь нижнюю часть крыла.

Все эти соображения легли в основу конструирования буера с жестким механизированным парусом-крылом площадью 5 м. Схема самого буера достаточно традиционна: трехточечная конструкция с задним управляемым коньком. Основанием корпуса служит собранная из сосновых брусков и фанеры рама; из фанеры же и обтекатель. Поперечная балка также деревянная - для нее подойдет прямослойная ровная доска толщиной 60 мм и длиной 3,3 м

На раму потребуется два продольных сосновых бруска сечением 25X60 мм и длиной 3,5 м и пять-шесть поперечных. Сверху и снизу они в сборе обшиваются фанерой толщиной 5 мм. Соединение деревянных элементов лучше всего вести на эпоксидном клее (однако пригоден и казеиновый). После отверждения клея и обработки полученной панели по наружному контуру на ней монтируется брусок основания (степс) мачты, а также опорный брусок рулевого конька.

Фанерный обтекатель собирается по упрощенной технологии Предварительно имеет смысл на небольшой модели (например, 1:5) уточнить конфигурацию элементов обшивки, вырезав их из плотной бумаги или картона, а потом уже перенести их очертания на фанеру. Далее в полученных заготовках вдоль стыкуемых кромок насверливаются с шагом 50-100 мм отверстия диаметром 2-3 мм, затем детали «сшиваются» мягкой медной проволокой. После соединения такими скрутками заготовок обтекателя все стыки изнутри заделываются эпоксидной шпаклевкой, состоящей из смолы и мелких древесных опилок. По завершении ее отверждения проволока снаружи удаляется кусачками-бокорезами, а изнутри стыки оклеиваются двумя-тремя слоями стеклоткани на эпоксидной смоле.

Но вот обтекатель установлен на панель основания, корпус снаружи прошпаклеван и зачищен. Остается оклеить его слоем стеклоткани и после финишных шпаклевок и окончательной зачистки окрасить синтетическими эмалями.

Поперечная балка буера - монолитная. Она вырезается из целой прямослойной доски толщиной 60 мм и максимальной шириной 320 мм. Если подобрать такое сечение затруднительно, балку можно склеить из двух-трех досок меньшей толщины. В готовом виде она имеет обтекаемую форму и переменное поперечное сечение. К панели основания балка крепится четырьмя болтами с резьбой М10 и гайками с шайбами; фиксируется двумя растяжками из стального троса Ø 4 мм со стандартными талрепами. На концах балки устанавливаются узлы подвески коньков.

Кстати, передние коньки амортизации не имеют: упругим элементом для них является сама поперечная балка. Задний управляемый конек может быть также без амортизатора, хотя отсутствие его несколько затрудняет управление буером. Но, в принципе, подрессорить его - задача не из сложных.

Управление рулевым коньком - тросовое, с приводом от руля автомобильного типа. Передача вращающего момента осуществляется стальным тросом Ø 3 мм, пропущенным через барабан Ø 60 мм на рулевой колонке, две пары направляющих роликов и двойной рулевой сектор Ø 250 мм. Барабан и ролики дюралюминиевые, точеные.

Поворотный узел паруса-крыла:

1 - велосипедная звездочка, 2 - мачта, 3 - крыло, 4 - малая велозвездочка, 5 - закрылок, 6 - ось поворота закрылка, 7 - поворотный узел, 8 - штифты цилиндрические Ø 6 мм, 9 - подпятник (дюралюминий), 10 - втулка (фторопласт, капрон или текстолит), 11 - винт М5, 12 - винт М5.

Одним из самых сложных элементов конструкции буера является механизированное крыло-парус. Собирается оно по классической «планерной» технологии. Для начала заготавливаются нервюры - для шести потребуется фанера толщиной 5 мм, а для трех (в том числе корневой и концевой) - толщиной около 12 мм. Для построения профилей нервюр советую воспользоваться таблицей из координат, каждое из значений которой выражено в относительных единицах (в процентах) от длины хорды профиля. Чтобы получить значения абсцисс и ординат соответствующего сечения паруса-крыла, нужно значение длины этого сечения последовательно умножать на табличное значение координат профиля. Следует отметить, что для паруса-крыла выбран профиль с относительной толщиной, равной 10%; он обладает высоким качеством и хорошо работает в большом диапазоне углов атаки.

Продольными элементами крыла-паруса являются лонжерон, носок и задняя кромка. Помимо этого, на участке от первой до шестой нервюры врезается стенка, разделяющая крыло на собственно крыло и закрылок.

Лонжерон - ферменной конструкции, его основу составляют верхняя и нижняя полки (сосновые рейки сечением 20X60 мм). После сборки он усиливается спереди и сзади рейками-раскосами, что и образует весьма жесткую ферму.

Передняя кромка - тоже сосновая рейка сечением 30X30 мм. Стыковка ее с нервюрами производится так: в кромке под них пропиливаются пазы, носок каждой из нервюр при этом обрезается, чтобы после сборки не было искажений профиля.

Приблизительно так же врезаются в нервюры задняя кромка и задняя стенка крыла. Здесь глубина пазов нужна в 10-15 мм.

Сборка крыла начинается с подготовки плаза. На ровном полу расчерчивается плановая проекция паруса-крыла с осями лонжеронов и нервюр. Далее на плазе закрепляется нижняя полка лонжерона, а на ней монтируются нервюры и закрепляются штапиками и эпоксидным клеем. Фиксация штапиков - небольшими гвоздями. Далее устанавливается на клею верхняя полка лонжерона и точно так же стыкуется с нервюрами.

Основание корпуса буера:

1 - поперечина (сосновый брусок сечением 20X60 мм), 2 - поперечины крепления степса мачты (сосновые бруски сечением 20X60 мм), 3 - степс (сосна 60X80X80 мм), 4 - поперечины узла крепления поперечной балки буера (сосновые бруски сечением 20Х60 мм), 5 - площадки крепления поперечной балки (сосновые бруски сечением 50Х60 мм), 6 - 8 - поперечины (сосновые бруски сечением 20X60 мм), 9 - поперечины узла крепления рулевого конька (сосновые бруски сечением 20X60 мм), 10 - установочная площадка рулевого конька (сосна 60X80X80 мм), 11 - законцовка (сосновый брусок сечением 60X60 мм), 12 - обшивка основания корпуса (фанера толщиной 5 мм), 13 - лонжероны основания (сосновые доски сечением 25X60 мм), 14 - носовая часть основания (сосновый брусок сечением 40Х60 мм).

Конек буера:

1 - лезвие конька (стальная полоса толщиной 8 мм), 2 - щека (бук или дуб), 3 - винт крепления щек к лезвию, 4 - втулка (труба стальная Ø 20Х3 мм, крепится к лезвию сваркой).

Убедившись, что эти элементы крыла соединены без перекосов, можно перейти к монтажу передней и задней кромок, а также задней стенки. Операция эта производится с помощью эпоксидной шпаклевки - с введенными в смолу мелкими древесными опилками или зубным порошком. Далее каркас крыла фиксируется на плазе так, чтобы были исключены искривления или перекосы. После отверждения эпоксидного связующего лонжерон усиливается раскосами. Диагональные силовые элементы следует ввести и между нервюрами, что значительно увеличит жесткость крыла при его кручении. Для этого совсем не обязательны раскосы - можно натянуть внутрикрыльевые растяжки из прочного капронового или даже льняного шпагата. Чтобы обеспечить одинаковое натяжение, рекомендуется делать их из единой нити. Места стыков растяжек с элементами конструкции крыла фиксируются эпоксидным клеем.

Приблизительно так же собирается и закрылок. Правда, устроен он не в пример проще крыла: два продольных элемента (передняя и задняя кромки), нервюры и диагональные раскосы. Сборка нервюр с продольными элементами - с помощью врезки; диагональные вставляются враспор, фиксация - эпоксидным клеем.

Обшивка паруса может быть самой различной. Проще всего обтянуть его перкалем, покрыть три-четыре раза эмалитом, а затем нитрокраской. Лучше, конечно, оклеить крыло лавсановой пленкой по «модельной» технологии. Как это делается, можно узнать из публикаций журнала «Моделист-конструктор». Наконец, подойдет и обшивка из воздухонепроницаемой ткани - например, болоньи или технической типа «500».

Аналогично выполняется и закрылок. Он подвешивается к крылу на двух самодельных петлях так, чтобы ось поворота закрылка совпадала с плоскостью хорд крыла.

Механизированный парус имеет возможность поворачиваться вокруг неподвижно закрепленной мачты, представляющей собой дюралюминиевую трубу Ø 40Х1,5 мм (можно использовать спортивный прыжковый шест; деревянный вариант должен иметь увеличенный диаметр у основания - до 50 мм). При этом крыло опирается на подпятник, зафиксированный на мачте. Для облегчения поворота паруса на его корневой нервюре монтируется опорная втулка, выточенная из капрона, фторопласта или текстолита.

При повороте крыла относительно корпуса навешенный на петлях закрылок автоматически отклоняется в противоположную сторону. Это достигается благодаря установленным на мачте и закрылке велозвездочкам с передаточным числом около 1,5, кинематически связанным втулочно-роликовой цепью. Угол поворота закрылка приблизительно в полтора раза больше, нежели угол отклонения крыла. Следует отметить, что угол этот - а следовательно, и передаточное число цепного привода - подбирается опытным путем. Кстати, имеет смысл установить звездочку на мачте не жестко, а с помощью простейшего фиксатора - например, резьбовой шпильки с рукояткой. Это даст возможность настраивать крыло-парус применительно к условиям движения - курсу и скорости ветра.

Мачта буера устанавливается в выточенный из дюралюминия стакан-степс. На топе мачты закрепляется оковка с тремя ушками для штага и пары вант (из троса диаметром 5 мм и трех стандартных винтовых талрепов).

Регулировка положения паруса-крыла производится с помощью шкотового устройства, состоящего из пары двухшкивных блоков и капронового каната диаметром 8-10 мм.

Коньки - со стальным полозом. Специалисты, правда, утверждают, что более подходит для этой цели бронза, однако разница между ними не слишком заметна. Щеки коньков - деревянные, желательно из бука или дуба. С полозом они соединяются винтами и гайками с резьбой М6 или М8.

Отладку буера следует производить в процессе пробных заездов. Предварительно имеет смысл к поверхности паруса-крыла подклеить (например, пластилином) тонкие нити-шелковинки длиной около 200 мм. Желательно, чтобы на каждой стороне паруса-крыла их было не менее пяти-шести десятков, причем наиболее интересны для контроля при пробных заездах зоны максимальной толщины крыла и оси поворота закрылка. Шелковинки наглядно подскажут вам о приближении срыва потока и позволят подобрать оптимальные соотношения между углами отклонения закрылка и самого паруса-крыла.

В. ЕВСТРАТОВ, инженер

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Парус-крыло! Тема, конечно, акуенно оригинальная. Но как бы где-то в "бэкграунде" чувствуются некий комплекс неполноценности "рождённого ползать", но страстно желающего летать. Чел с таким комплексом как бы повышает статус паруса, этакого убогого невзрачного и примитивного устройства, до сверкающих небесных высей чуда эволюции - крыла.
Чтобы не было мешанины из мух и котлет, прежде чем начинать подобные темы, хорошо бы определиться, для себя, ап чом реь пойдёт? Чем крыло отличается от паруса? По-моему, тем, что крылья придуманы для свободного полёта в воздухе, а паруса - для движения по границе между воздухом и водой. И тогда совершенно не понятно, нахрена одно называть другим, или смешивать эти два разных термина в одну кучу. Парус, как идея, ничем не хуже и не лучше крыла, как идеи, он просто предназначен для выполнения соверженно иной, чем крыло, функции. То есть, как идея, парус совершенно не нуждается в каких-то "качественных" улучшениях и подтягиваниях до чего-то более совершенного, поскольку ничего более совершенного для выполнения той функции, для которой он предназначен, просто нету. Ну глупо же пытаться двигаться вверх, когда нам нужно двигаться вперёд, это разные направления движения.
Второй побудительной причиной игры в слова, помимо комплекса несостоявшегося пелота, обычно является техническая безграмотность: мол, парус - это такая тряпочка, привязанная к палке верёфками, а крыло - это такое длинное, толстое и гладкое, как... у самолёта с боков, кароче. Если слегка поинтересоваться вопросом, то становится ясно, что причина эта совершенно безосновательна: крылья первых самолётов (да и последних) были не толще "тряпки на палке с верёфками". То есть объёмность "несущей поверхности" (под это определение одинаково хорошо подходят и крыло и парус) не является принципиальной для выполнения несущей поверхностью своей функции: создавать большую поперечную (к направлению скорости обтекающего её потока) силу при малости силы продольной. Объёмные паруса создавались неоднократно, в том числе и для виндсерфинга, но каких-либо убедительных преимуществ именно объёмности так и не показали, а потому быстро забывались. Ну вот, очередное "изобретение велосипеда". Пачед? Уважуха? Да за что? Скорее всего мужик просто верит в один из мифов из "современной теории крыла", и с упорством, достойным лучшего применения тратит своё время и деньги на его доказательство, понятно - безуспешное. Если бы его средства к существованию зависели только от дохода с продажи его "чудо-парусов", то его упорство быстро сошло бы на нет, а так-то, в качестве хобби - почему бы и нет, без чудаков жить было бы скучно.

Кандидат военно-морских наук В. ДЫГАЛО, профессор, контр-адмирал. Рисунки автора.

Российский четырехмачтовый барк "Крузенштерн" - единственный сохранившийся до наших дней представитель "летающей линии П". Построен в 1926 году в Германии и до сих пор служит учебным судном, помогая воспитывать новые поколения офицеров Российского флота.

Чемпион среди парусников - пятимачтовый гигант "Пройссен".

Самый быстрый парусник, чайный клипер "Катти Сарк".

Илл. 1. Эффект Магнуса.

Первое роторное судно "Букау".

Судно с ветродвижителем парус-крыло.

Грузовое судно "Дина-Шифф".

Танкер "Шин Эйтоку Мару".

Судно с воздушными вертикальными турбинами карусельного типа.

Ответить на вопрос, когда был изобретен парус, - так же невозможно, как невозможно назвать автора знаменитых палеолитических "венер" - примитивных женских изваяний, найденных археологами в разных местах Евразийского континента. Может быть, и то и другое - парус и "венеры" - появились в одно время, в древнекаменном веке? Об этом нам остается только гадать. Уверенно сказать можно лишь то, что 6000 лет назад парус уже существовал - египтяне использовали прямой парус, плавая по Нилу.

Развитие паруса шло параллельно с развитием человечества и достигло пика к середине XIX столетия, когда появились знаменитые "выжиматели ветра" - чайные клипера, а к началу XX века - не менее знаменитые корабли типа "Flyins Р" ("Летучие П") гамбургской компании "Лаэш". Ее пятимачтовый корабль "Пройссен" считался в начале XX века самым большим парусным судном в мире: регистровая вместимость - 5081 т, водоизмещение - 11 000 т. Рекордом осталась 6500-метровая площадь 45 парусов (30 из них на пяти мачтах были прямыми). Как ни велика была роль первых железных судов, приводимых в движение паровой машиной, именно XIX век с полным правом может быть назван порой расцвета деревянных парусных грузовых кораблей. Конструкторы продолжали работать над улучшением качества парусных судов, стремясь увеличить их скорость, которая стала одним из основных факторов в возрастающей конкуренции торговых компаний. В состязании корабелов лидировали две страны - США и Англия.

Американцам первым удалось построить очень легкие, стройные и быстроходные суда - клипера. Но англичане не отставали, и очень скоро начались настоящие соревнования английских и американских парусников.

Среднее водоизмещение судов составляло 1000-2000 т, но некоторые из них имели водоизмещение до 3500-4000 т. Длина их в шесть раз превышала ширину. Тогда и появился известный принцип судостроения - "длина бежит". Создавая этот тип кораблей, судостроители сотворили настоящее чудо. Корпус клиперов был композитным: киль и шпангоуты - железные, обшивка - деревянная, покрываемая в подводной части медными листами для предотвращения обрастания водорослями. Благодаря этому легкость конструкции судна обеспечивалась не в ущерб его прочности.

Для снижения численности экипажа до 23-28 человек и облегчения их работы в море на этих парусниках были использованы достижения техники середины XIX века: винтовые рулевые приводы, ручные лебедки с зубчатой передачей, помпы с маховым колесом и другие механизмы. На "пенителях моря" все было подчинено достижению наибольшей скорости. Длинные и стройные, с гладким, как тело угря, корпусом клипера имели изящно изогнутые острые форштевни, которые разрезали волны, как нож. Мачты-"небоскребы" и сверхдлинные бушприты несли такое изобилие парусов, превзойти которое было уже невозможно. Наиболее быстроходными считались знаменитые чайные клипера: их скорость достигала 20 узлов (37 км/ч). Десять с лишним метров в секунду - так быстро летел (именно летел!) с волны на волну тысячетонный остроносый корабль. Торговые компании каждый год выдавали особую премию тому судну, которое первым привезет из Китая чай нового урожая, - отсюда и название. По сравнению с типами парусного вооружения прошлых столетий вместо обычных до сих пор трех или, в исключительных случаях, четырех ярусов прямых парусов полностью оснащенный клипер нес на каждой мачте до семи прямых парусов. Названия их (начиная снизу) у английских моряков звучали так: нижний парус (фок или грот), нижний марсель, верхний марсель, брамсель, верхний брамсель, "королевский" парус, "небесный" парус, "лунный" парус (или "небо-скреб"). Кроме перечисленных по бокам основных парусов при попутных ветрах на тонких круглых "деревьях", лисель- спиртах, выдвигающихся вдоль рей, ставили добавочные паруса-лисели, а между мачт - стаксели. Общая площадь всех парусов составляла 3300 м 2 и более. Когда при благоприятном ветре клипер шел под всеми парусами, со стороны казалось, что над поверхностью океана летит белое облако. За изящество, обтекаемые формы, изобилие парусов и скорость клипера получили еще одно название - "винджаммеры" ("выжиматели ветров").

Чайные гонки превратились в настоящее соперничество в скорости. Например, в 1866 году из Фучжоу (Китай) почти одновременно вышли пять клиперов с грузом чая. Это состязание в скорости было одним из самых волнующих морских плаваний через полсвета. Каждый из пяти честолюбивых капитанов мечтал прийти в Лондон первым. В гонках на карту ставилось все. Один из парусников, "Ариель", во время жестокого шторма в Атлантическом океане много часов подряд шел с большим креном. Крутые волны перекатывались через палубу клипера. Но вместо того, чтобы убрать хотя бы один парус, экипаж наглухо задраил люки и все прочие отверстия парусиной. Чтобы не быть смытыми за борт, моряки привязывались у своих рабочих мест специальными тросами. Почти полсуток продолжалась борьба со стихией. Корабль вышел из нее победителем. 6 сентября, затратив неполных 99 суток, "Ариэль" прибыл в Англию... После открытия Суэцкого канала в 1869 году рейсы парусных судов на "чайной" линии стали невыгодными. "Ариэль" занимался случайными работами, возил уголь из Англии в Японию и Австралию.

И все же на короткое время клипера опять вошли в моду. Австралия стала вырабатывать много шерсти, в которой нуждались Европа и Америка. Паровых судов, способных без дополнительной загрузки углем ходить на такие большие расстояния, не хватало, пришлось прибегнуть к услугам парусных. В октябре 1885 года из австралийского порта Сидней отправились в Англию шесть клиперов, и среди них "Катти Сарк", которую за прекрасные обводы, громадную парусность и мореходные качества называли "царицей морей". На шестьдесят седьмой день плавания "Катти Сарк" раньше всех появилась в Лондоне. Это был небывалый для парусных судов рекорд. И не только парусных, но и паровых. На обратном пути клипер нагнал быстрейший в то время пассажирский пароход "Британия". Рассказывают, что вахтенный помощник, разбудив капитана, сказал:

Сэр! Выйдите на мостик, происходит что-то необыкновенное - нас обгоняет парусник!

Капитaн улыбнулся и не тронулся с места.

Чего же идти. Ведь это "Катти Сарк", и тягаться с ней бесполезно!

Век клиперов завершился в 1924 году, когда пошел на слом один из последних красавцев - "Хасперус". И лишь "Катти Сарк" проплавала до 1949 года.

Однако с концом военного и транспортного парусного флота парусу не пришел конец. Как движитель спортивных судов и шлюпок парус играет и долго будет еще играть громадную роль в деле воспитания моряков.

Стремительному техническому прогрессу сопутствовало появление серьезных экологических проблем, наносящих порой непоправимый вред природе. Катастрофы с нефтяными танкерами и грандиозные пожары на морских промыслах подтверждают это. Помочь мировому морскому флоту стать экологически чистым должны новые идеи и решения. И новизну может нести в себе парус.

К счастью для человечества, всегда находятся люди, способные увидеть то, чего не замечают другие, и обладающие неиссякаемой пытливостью - этим неотъемлемым качеством всех изобретателей.

Таким человеком был немецкий инженер Антон Флеттнер (1885-1961). Однажды, наблюдая во время плавания на паруснике за усилиями матросов, работавших в шторм с парусами на высоте 40-50 м, он подумал: а нельзя ли чем-нибудь заменить классический парус, используя при этом все ту же силу ветра? Размышления заставили Флеттнера вспомнить о его соотечественнике физике Генрихе Густаве Магнусе (1802-1870), который в 1852 году доказал, что возникающая поперечная сила, действующая на тело, вращающееся в обтекающем его потоке жидкости или газа, направлена в сторону, где скорость потока и вращение тела совпадают.

Наличие такого эффекта Магнус подтвердил позже на опыте с весами. На одну из их чаш клали горизонтально цилиндр с подключенным к нему моторчиком, а на другую -уравновешивавшие гири. Цилиндр обдували воздухом, но, пока не включали моторчик, он оставался неподвижным и равновесие весов не нарушалось. Однако стоило лишь запустить моторчик и тем самым заставить цилиндр вращаться, как чаша, где он находился, или поднималась, или опускалась - в зависимости от того, в каком направлении шло вращение. Этим опытом ученый установил: если на вращаемый цилиндр набегает поток воздуха, то скорости потока и вращения по одну сторону цилиндра складываются, по другую же - вычитаются. А поскольку большим скоростям соответствуют меньшие давления, на вращаемом цилиндре, помещенном в поток воздуха, возникает движущая сила, перпендикулярная потоку. Ее можно увеличивать или уменьшать, если крутить цилиндр быстрее или медленнее. Именно опыты Магнуса и навели Флеттнера на мысль заменить парус на судне вращающимся цилиндром. Но сразу же возникли сомнения. Ведь на большом судне такие роторы будут выглядеть огромными башнями высотой 20-25 м, которые в шторм создадут колоссальную опасность для судна. На эти вопросы требовалось ответить, и Флеттнер начал свои исследования.

В последних числах июня 1923 года он производил на озере Ванзее, вблизи Берлина, первые опыты с моделью. Это была шлюпка длиной менее метра с бумажным цилиндром диаметром около 15 см и высотой около 1 м. Для его вращения использовался часовой механизм. Опыты прошли успешно, однако осталось немало вопросов, и в том числе о силах, возникающих на роторе во время вращения.

Все дальнейшие исследования и связанные с ними измерения проводились в лаборатории. Их результаты сводились к следующему.

Если на поверхность вращающегося ротора воздействует ветер, скорость последнего изменяется. Там, где поверхность движется навстречу ветру, его скорость уменьшается, а давление увеличивается. С противоположной же стороны ротора скорость воздушного потока, наоборот, увеличивается, а давление падает. Полученная разность давлений и создает движущую силу, которую можно использовать для перемещения судна.

Но самым удивительным в исследованиях Флеттнера было другое. Оказалось, что возникающая движущая сила была во много раз больше, чем давление ветра на неподвижный ротор. Расчеты показали: используемая энергия ветра примерно в 50 раз превышала ту, что затрачивалась на вращение ротора, и зависела от частоты его вращения и скорости ветра. Выяснилось также и еще одно важное обстоятельство - возможность плавания роторного судна против ветра переменными курсами (галсами), близкими к линии ветра. Другими словами, для такого судна оставались действительными те естественные законы плавания, которыми пользовались обычные парусники. Но при этом его перспективы оценивались просто блестяще, поскольку площадь ротора по отношению к площади парусов обычного парусника, сравнимого по водоизмещению с роторным судном, составляла лишь 0,1-0,15 процента, а его (ротора) масса была примерно в 5 раз меньше, чем суммарная масса парусного вооружения.

Естественно, что одна часть усилий, полученных за счет вращения цилиндра, затрачивается на создание дрейфа (смещения идущего корабля с линии курса), а другая - на движение судна вперед.

Продувка в аэродинамической трубе показала: эту движущую силу можно увеличить почти в 2 раза, если накрыть сверху цилиндр диском (в виде плоской тарелки), диаметр которого больше, чем диаметр самого цилиндра. Кроме того, важно было найти нужные соотношения между скоростью ветра и угловой скоростью вращения ротора. От этого зависит величина силы, вызываемой вращением; потому-то сначала роторы испытывались в аэродинамической трубе и потом уже на модели судна. Эксперимент позволил установить их оптимальные размеры для опытного судна, а за необычным движителем с тех пор закрепилось название "ротор Флеттнера".

В качестве первого опытного судна для его испытания использовали видавшую виды трехмачтовую шхуну "Букау" водоизмещением 980 т. В 1924 году на ней вместо трех мачт поставили два ротора-цилиндра высотой 13,1 м и диаметром 1,5 м. Их приводили в движение два электромотора постоянного тока напряжением 220 В. Электроэнергию вырабатывал небольшой дизель-генератор мощностью 33 кВт (45 л.с.).

Испытания начались на Балтике и закончились удачно. В феврале 1925 года судно покинуло "вольный город Данциг", направляясь в Англию. В Северном море "Букау" пришлось бороться с сильным волнением, но шхуна за счет правильной перебалластировки раскачивалась меньше, чем обычные корабли. Опасения, что тяжелые роторы отрицательно подействуют на остойчивость судна или сами пострадают во время качки, не оправдались, давление ветра на их поверхности не достигло больших величин. В то же время погода была настолько скверной, что многие суда такого же водоизмещения, как и "Букау", искали убежища в близлежащих портах. "Ни один парусник не мог бы совершить плавания, которое проделала роторная шхуна", - писали английские газеты.

Обратный переход в Куксхафен тоже сопровождался штормами. На этот раз "Букау" нагрузили углем по ватерлинию, и она еще раз показала свои преимущества перед другими парусниками. Волны перекатыва лись через палубу и разбили спасательную шлюпку, но сами роторы никаких повреждений не получили. Впоследствии шхуну переименовали в "Баден-Баден" и она совершила еще одно трудное плавание: перенеся жестокий шторм в Бискайском заливе, пересекла Атлантический океан и благополучно прибыла в Нью-Йорк.

Роторный движитель получил высокую оценку. Он оказался проще в обслуживании, чем обычные паруса, быстро входил в рабочий режим, и поэтому испытания решили продолжить. В 1924 году на верфи акционерного общества "Везер" (Германия) было заложено первое судно, спроектированное специально для плавания с роторным движителем. Его назвали "Барбара" и предназначили для перевозки фруктов из портов Южной Америки в Германию. При длине 85, ширине 15,2 и осадке 5,4 м судно имело грузовместимость около 3000 т. По первоначальному проекту на нем предполагалось поставить один гигантский ротор высотой 90 м и диаметром 13,1 м, но затем, учитывая опыт шхуны "Букау", ротор-колосс заменили тремя, меньшего размера - высотой 17 м и диаметром 4 м. Их изготовили из алюминиевых сплавов со стенками толщиной несколько больше миллиметра. Для каждого ротора предназначался один мотор мощностью 26 кВт (35 л.с.), развивающий 150 об/мин. При ветре 5 баллов (8-11 м/с) благоприятного направления (курсовой угол 105-110 градусов) тяга роторных движителей была эквивалентна работе двигателя мощностью 780 кВт (1060 л.с.). Кроме того, одновальная дизельная установка мощностью 750 кВт (1020 л.с.) с приводом на гребной винт дополняла тягу ротора, что позволяло судну идти со скоростью 10 узлов (18,5 км/ч).

Являясь, по существу, парусниками, роторные суда обладали перед ними колоссальными преимуществами. Отпадала необходимость вызывать команду на палубу для уборки и постановки парусов; всего один офицер (на мостике) управлялся с движением роторов при помощи нескольких рукояток. В бейдевинд (против ветра) эти суда шли до 30 градусов, тогда как у большинства обычных парусников угол между направлением ветра и направлением движения составляет не менее 40-50 градусов. Скорость хода регулировалась скоростью вращения роторов, а маневрирование - изменением направления их вращения. Роторные суда могли даже давать задний ход.

Однако сложность конструкции роторных движителей, а главное - то обстоятельство, что оснащенные ими суда продолжали оставаться парусниками со всеми недостатками, первый из которых - полная зависимость от ветра, не привели к их широкому распространению.

Тем не менее конструкторы вновь и вновь возвращались к идее использования энергии ветра. В середине 60-х годов ХХ века во многих морских странах были созданы специальные конструкторские бюро, которые занимались проблемой ветродвижения, то есть движения судна с помощью ветродвигателей и ветродвижителей. В первом случае преобразование энергии ветра в тягу происходит по цепочке: ветродвигатель - передача (механическая или электрическая) - гребной винт. По конструкции различают ветродвигатели с горизонтальной осью вращения (1-, 2-, 3- или многолопастная турбина) и с вертикальной, например турбина барабанного типа; по скорости вращения - быстроходные, имеющие высокую скорость вращения (хорошо сочетаются с электрогенераторами по частоте вращения), и тихоходные, создающие большой вращающий момент непосредственно на гребной винт. При использовании ветродвигателя судно не ограничено в выборе курса относительно направления ветра, однако он, ветродвигатель, имеет малый кпд по причине многократного преобразования энергии. Ветродвигатель эффективен при скоростях ветра от 3-4 до 12-14 м/с, причем судно лучше двигается при встречных ветрах, нежели при попутных; при скорости ветра 15-20 м/с он должен быть остановлен, поскольку возникает угроза его разрушения.

Опытные ветродвигатели различных конструкций были успешно испытаны на яхтах. Однако на больших транспортных судах они не используются даже в качестве приводов электрогенераторов, хотя эксперименты в этом направлении продолжаются.

Во втором же случае сила тяги, влекущая судно, возникает непосредственно на ветродвижителе, но плавание прямо против ветра и в некотором диапазоне курсовых углов вблизи этого направления невозможно; скорости таких судов зависят от скорости ветра и сравнительно невелики - 7-10 узлов (13-18,5 км/ч). К основным типам ветродвижителей относятся уже известный нам роторный Флеттнера, парус-крыло и классический парус, который до сих пор продолжают совершенствовать, причем по линии создания новейших материалов. Появились немнущийся лавсан и термоустойчивый нитрон, материалы из пластмасс и синтетических волокон, отличающиеся повышенной прочностью и легкостью. Именно они используются для современных судов с парусным движителем.

Первые полномасштабные исследования ветродвижителей были проведены в 1960-1967 годах в гамбургском Институте кораблестроения, где разрабатывался проект грузового судна дейдветом 17 000 т. Результаты последующей упорной работы, включая продувку более 50 моделей в аэродинамической трубе и испытания в опытном бассейне, позволили построить в 1982 году судно "Дина-Шифф", которое долгое время не имело аналогов в мире. Оно представляет собой парусник, принимающий 16 500 т груза и отличающийся внушительными габаритами: длина - 160,5 м, ширина - 21 м. Высота борта - 13 м, осадка - 9,1 м. Каждая из шести поворотных мачт несет пять прямых парусов, которые растягивались на профилированных реях без промежутков и в целом составляли один эффективный (высокий и узкий) гигантский парус площадью 1200 м 2 (общая площадь всех парусов достигла 7200 м 2). Управляет электромотора ми, поднимающими или убирающими любой из 30 парусов, вахтенный офицер из рубки, где установлен компьютер. Кроме парусов на "Дине-Шифф" установили три дизеля по 330 кВт (448 л.с.). Судно развивало среднюю скорость 12 узлов, а при благоприятном ветре - до 16.

Дальнейшее совершенствование проекта "Дина-Шифф" продолжило научно-исследовательское общество Фридриха Вейса из германского города Аренсбурга. Оно создало эффектный парусный сухогруз с автоматической уборкой парусов, каждый из которых наматывался на вал, расположенный в профилированной рее. Длина сухогруза составляет 65 м; он может взять на борт 1000 т груза. Каждая из трех поворотных мачт несет по пять прямых парусов; дополнительно, на случай штилевой погоды, на судне установили вспомогательный дизель мощностью 350 кВт (476 л.с.). Используя только парусный движитель, такие суда могут развивать скорость 12-14 узлов, а при сильном попутном ветре - до 20 (37 км/ч). Это соответствует скорости современного контейнеровоза.

"Дина-Шифф" и сухогруз из Аренсбурга не одиноки на нынешних морских дорогах - начиная с июня 1990 года им составил компанию флагман организации "Гринпис" "Рейнбоу-Урриор", переоборудованный в Гамбурге на манер "Дины-Шифф". При силе ветра в 5 баллов судно развивает скорость более 12 узлов (22 км/ч).

Учитывая хорошие ходовые качества названных судов, сейчас проектируются сухогрузы-парусники грузоподъемностью от 900 до 2000 т. Правда, немецкие ученые считают, что для Европы они вряд ли будут рентабельными из-за непостоянства дующих близ ее берегов ветров, и предлагают оснащать обычные сухогрузы и контейнеровозы дополнительным парусным вооружением, что приведет к экономии 10-25 процентов топлива.

Особенно серьезно к разработке ветродвижителей и ветродвигателей относятся в тех странах, где природные запасы нефти ограничены или вообще отсутствуют. Так, в Японии только за период 1980-1986 годов вошли в строй 10 судов, имеющих кроме механического и ветровой движитель. Типичный их представитель - прибрежный танкер "Шин Эйтоку Мару" водоизмещением 1600 т, спущенный на воду в июле 1980 года компанией "Имамура Шипбилдинг". Основные его размеры: длина - 66, ширина - 10,6, осадка - 4,4 м. Оснащен двумя парусами площадью по 97 м 2 каждый и двигателем мощностью 1177 кВт (1600 л.с.). Средняя скорость танкера - 12 узлов (22 км/ч). Время, которое он проходит под парусами за год, составляет 15 процентов от общего.

Высшим достижением в строительстве судов по схеме "механический двигатель плюс ветровой движитель" стало японское судно "Усики Пионер". При водоизмещении 26 тыс. т оно имеет длину 162,4, ширину 25,2 и осадку 10,6 м, два главных двигателя мощностью по 2427 кВт (3300 л.с.) и два паруса по 320 м 2 каждый. При комбинированном использовании парусов и одного из двигателей судно может идти со средней скоростью 13,5 узла (25 км/ч). Управление ветровым движителем осуществляется по командам ЭВМ.

Японские инженеры также разработали проект парусника, способного перевозить 17 тыс. т груза и 250 пассажиров. Все работы, связанные с постановкой и уборкой парусов, будут полностью механизированы. Это позволит одному человеку с помощью ЭВМ за 20 секунд справиться с 1500 м 2 парусов, размещенных на шести мачтах. Максимальная скорость судна - около 20 узлов (37 км/ч). Оно способно "ловить" малейший ветерок. На случай полного безветрия предусмотрена установка двигателей.

Многоцелевые и довольно дорогие испытания вариантов парусного вооружения были проведены в 1985 году польскими учеными и конструкторами. На 50-метровом опытном судне "Океания" водоизмещением 550 т установили три мачты из прочного и легкого сплава с прямыми парусами общей площадью 700 м 2 . Их ставили и убирали с помощью гидравлических приводов и с использованием специальных снастей из сверхпрочного синтетического материала - кевлара. При усилении ветра площадь парусов уменьшалась, а при ветре более 25 м/с они складывались в виде коробов вокруг мачты.

Этот опыт позволил корабелам Гданьской верфи построить в 1986 году круизное судно "Гварек", парусное вооружение которого было почти аналогично установленному на "Океании". "Гварек" стал собственностью "Бюро путешествий" как плавучий дом отдыха, пассажиры которого размещаются в 100 двухместных комфортабельных каютах. Все управление судном ведется с мостика при помощи компьютера и гидросистем.

Новые паруса потребовали и более современного крепления и уборки. Разработано несколько конструкций мачт, и в каждой есть свои "изюминки". Так, одни мачты установлены на поворачивающихся платформах, а паруса выдвигаются из рей и втягиваются внутрь их, словно полотно киноэкрана. А польский изобретатель А. Боровский из Щецина еще в 1977 году получил патент на мачту, которая состоит из множества металлических трубок, связанных в одно целое тонкой внешней оболочкой из сверхпрочного синтетического материала. Такая конструкция легче обычной и не уступает ей в прочности.

Паруса новых видов разработаны и для спортивных судов. В частности, уже нашел применение новый движитель - парус-крыло. Он выполнен в виде жесткого паруса, аналогичного по конструкции крылу планера или самолета, но имеющего симметричный профиль поперечного сечения. Его ставят на буерах и парусных катамаранах, развивающих высокие скорости, при которых он работает на малых углах атаки. Еще эффективнее парус-крыло, имеющий выпукло-вогнутый профиль, изменяющийся в зависимости от угла атаки и от галса, которым идет судно или буер. Например, в конструкции, примененной на катамаране "Пэшиент-Леди У" (США), парус-крыло состоит из шести частей, устанавливаемых автоматически с помощью компьютера под определенными углами к ветру. Он изготовлен из фанеры, стеклопластика, пенопласта и синтетической ткани, его масса при площади 28 м 2 составляет лишь 46 кг.

Конструкторов, занимающихся ветровыми движителями и двигателями, больше всего привлекают те проекты, которые позволяют увеличить скорость судов до 20 узлов, то есть достичь скорости чайных клиперов. Делаются попытки возродить парусный флот на современной основе, используя принцип движения на воздушной подушке и на подводных крыльях.

Есть положительные сдвиги и в разработке новых типов ветродвигателей. Так, немецкие инженеры предложили двигатель "карусельного типа", в котором на двух вертикальных осях расположены шесть плоскостей из полиэстра, повернутых друг к другу под углом 60 градусов. Ветер, воздействуя на такие воздушные турбины, заставляет их вращаться - тем самым его кинетическая энергия преобразуется в механическую энергию вращения вала судового винта.

Сегодня существует достаточно много различных проектов ветродвижителей и ветродвигателей, как реализованных, так и находящихся на стадии разработок. Есть из чего выбирать, однако специалисты пришли к выводу, что наиболее целесообразным вариантом является установка на морских и речных судах ветродвижителя как дополнения к основному механическому двигателю. Это даст 25-30 процентов экономии топлива и обеспечит судам вполне приемлемую скорость в 16 узлов, а кроме того, позволит вместо мощной энергетической установки применять сравнительно небольшую. И еще одно обязательное условие: использование всех новых видов парусных движителей требует широкого внедрения компьютеров. Только быстродействующая вычислительная техника может учесть все параметры, влияющие на движение корабля, и этим повысить безопасность его плавания.

Подписи к иллюстрациям

Илл. 1. Как видно из рисунка, на вращающийся цилиндр начинает действовать поперечная направлению воздушного потока сила. Таким образом, очевидно, что самый выгодный курс для роторного судна - когда ветер дует строго в борт. А направление движения зависит лишь от того, по или против часовой стрелки вращается ротор.

Илл. 2. Бейдевинд называют полным, если этот угол больше 66 о, и крутым - если меньше. Движение вперед обеспечивает та составляющая ветрового давления (а), которая совпадает с курсом парусника, тогда как действие боковой составляющей (б) нейтрализуется корабельным килем.

За последние несколько лет в яхтенной индустрии было разработано много технологий жестких парусов. Их перфоманс, без сомнения, превосходил классическое парусное вооружение. Используемые в основном в парусных гонках, жесткие паруса по-прежнему остаются очень сложными для повседневного использования и созданы для больших парусных лодок.

Inflated Wing Sails (IWS) предлагает новый плавный и сбалансированный способ движения под парусом. Дутые крылатые паруса стабильны в любых условиях ветра. На конструкцию лодки нет давления. Нет больше лебедок, фалов, вантов или сложного палубного оборудования. Эта технология предлагает ощущение свободы со сбалансированным вооружением, одновременно минимизируя усилия на лодке. Это революция для суперяхт, круизных яхт и транспортных судов, поскольку почти все присущие силы парусу с моноповерхностью исчезают и освобождают палубу от всего ненужного оборудования.






Авиатор Лоран де Калберматтен и яхтсмен Эдуард Кесси создали концепцию, вдохновленную и основанную на парапланах и надувных летательных аппаратах, которые объединяют простоту, перфоманс и удобство использования. Двойной слой образующий симметричный профиль крыла, вентиляторы расположены внутри передней кромки, стабилизируя форму паруса для разных условий ветра и свободно стоящая, убирающаяся мачта, скрытая внутри крыла.

Этот вид паруса можно легко запустить с помощью автоматической системы. Крыло летает вертикально и не создает локального напряжения внутри мембраны, легкие паруса, используемая как для шпангоута, так и для обтекателя. Маленький угол наклона против ветра и более легкие килевые и яхтенные подкрепления, а также требуется меньше средств контроля. Inflated Wing Sails контролируют площадь паруса по высоте мачты. Спуск парусов производится путем спуска крыла и втягивания мачты.

Дутые крылатые паруса идеально подходят для круизных яхт, так как освобождают пространство палубы от оборудования, и упрощают всю конструкцию, что влияет на вес яхты, и улучшает перфоманс. Этот тип оснастки предлагает совершенно новую философию яхтинга.




Настоящие фанаты экстремальных видов спорта знают, как дорого обходится спортивное оборудование. А для тех, кто занимается несколькими различными экстремальными видами спорта, затраты возрастают в геометрической прогрессии. Решением проблемы может стать парус-крыло кайтвинг.




Кайтвинг - универсальное крыло. Он похож на дельтаплан и может быть использован в качестве инвентаря для занятий различными экстремальными видами спорта. Кайтвинг лёгок по весу, а в свёрнутом виде его габариты не больше обычного чехла для лыж.



Главная особенность кайтвинга заключается в том, что под ногами у экстремала может быть всё, что угодно: коньки, ролики, сноуборд, горные лыжи, скейтборд, а кататься можно по снегу, песку, льду, воде – главное, чтобы это была достаточно ровная площадка больших размеров.



Таким образом, кайтвинг можно считать всесезонным и универсальным снаряжением - на ногах что угодно, в руках крыло, которое позволяет разогнаться с помощью ветра, и главное - море удовольствия и адреналина.



Кайтвинг прост в использовании, и с ним можно работать на интуитивном уровне. Основы обращения с крылом быстро освоит даже новичок, а что могут вытворять с кайтвингом опытные спортсмены, описать достаточно сложно, это нужно видеть. Некоторые любители экстрима умудряются разогнаться с крылом в руках до 100 км\ч, исполняя при этом сумасшедшие трюки.



Кайтвинг не просто дарит драйв, но учит самоконтролю, развивает координацию движений и может пригодиться в различных видах спорта.

Для тех, кто интересуется историей спорта мы подготовили материал о .

Поделиться: